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METHODOLOGY

DeepFlower: a deep learning‑based 
approach to characterize flowering patterns 
of cotton plants in the field
Yu Jiang1,2, Changying Li2,3*  , Rui Xu2, Shangpeng Sun2, Jon S. Robertson3 and Andrew H. Paterson3,4

Abstract 

Background:  Flowering is one of the most important processes for flowering plants such as cotton, reflecting the 
transition from vegetative to reproductive growth and is of central importance to crop yield and adaptability. Con-
ventionally, categorical scoring systems have been widely used to study flowering patterns, which are laborious and 
subjective to apply. The goal of this study was to develop a deep learning-based approach to characterize flowering 
patterns for cotton plants that flower progressively over several weeks, with flowers distributed across much of the 
plant.

Results:  A ground mobile system (GPhenoVision) was modified with a multi-view color imaging module, to acquire 
images of a plant from four viewing angles at a time. A total of 116 plants from 23 genotypes were imaged during 
an approximately 2-month period with an average scanning interval of 2–3 days, yielding a dataset containing 8666 
images. A subset (475) of the images were randomly selected and manually annotated to form datasets for training 
and selecting the best object detection model. With the best model, a deep learning-based approach (DeepFlower) 
was developed to detect and count individual emerging blooms for a plant on a given date. The DeepFlower was 
used to process all images to obtain bloom counts for individual plants over the flowering period, using the resulting 
counts to derive flowering curves (and thus flowering characteristics). Regression analyses showed that the Deep-
Flower method could accurately (R2 = 0.88 and RMSE = 0.79) detect and count emerging blooms on cotton plants, 
and statistical analyses showed that imaging-derived flowering characteristics had similar effectiveness as manual 
assessment for identifying differences among genetic categories or genotypes.

Conclusions:  The developed approach could thus be an effective and efficient tool to characterize flowering pat-
terns for flowering plants (such as cotton) with complex canopy architecture.
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Background
Flowering is one of the most important processes for 
angiosperms (flowering plants), reflecting the transi-
tion from vegetative to reproductive growth and sig-
nificantly affecting crop yield and adaptability to various 

environments. Therefore, characterization of flowering 
patterns would not only facilitate studies for understand-
ing angiosperms genetically and physiologically, but also 
holding potential to contribute to breeding of new cul-
tivars for optimal yield and environmental adaptability 
[1–3].

Conventionally, studies related to plant flowering pat-
terns have required human evaluators to check experi-
ment fields and record flowering status manually. For 
instance, plants and plots can be checked regularly by 
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human evaluators to monitor characteristics such as the 
number of days after planting (DAPs) to the first bloom. 
In addition, human evaluators often used a categorical 
scoring system to assess flowering stages (e.g., estimat-
ing when 10% of plants in a plot have opened blooms), 
so that the time duration between particular flowering 
stages can be calculated. Human recorded flowering data 
have helped researchers to study flowering patterns for 
several important crops such as maize [4], rice [5], cereal 
[6], and sorghum [7]. Human evaluation, however, has 
two major disadvantages. First, the evaluation is subjec-
tive, which means that different human evaluators might 
give different scores to an individual plant/plot. As a 
result, human-evaluated flowering data could contain a 
substantial amount of noise. Second, human evaluation 
is laborious, and presents great challenges for large-scale 
experiments and breeding programs. An automated high 
throughput approach to characterize flowering patterns 
can mitigate each of these disadvantages.

Advances in high throughput plant phenotyping (HTP) 
and breakthroughs in deep learning enable the possibility 
of rapid characterization of flowering patterns for plants 
in the field. Several studies demonstrated the use of deep 
convolutional neural networks (CNNs) and meta-mod-
els (e.g., Faster RCNN developed by Ren et  al. [8]) to 
detect and count fruit in images for crops such as man-
goes [9], apples [10], and sweet peppers [11]. Although 
these studies achieved relatively high counting accuracies 
(R2 > 0.92), they were primarily used for “one time” meas-
urements of yield estimation. A big challenge to flower-
ing characterization is that in many plants it occurs over 
a long period of time, requiring one to frequently detect 
and count newly opened blooms on plants.

Recent studies have intensively investigated deep learn-
ing-based solutions to flower detection and counting for 
field crops such as wheat [12–16], corn [17], sorghum 
[18], rice [19], and cotton [20]. Based on the counting 
strategies, these methods can be classified into three 
categories: regression-based, classification-based, and 
detection-based counting [21]. Regression-based count-
ing is a one-stage strategy and extracts features using 
CNNs to directly regress a continuous count of flowers/
floral structures in images. Classification-based count-
ing is a similar strategy but it classifies images into a class 
representing a discrete count/percentage of flowers/flo-
ral structures. The two counting strategies considerably 
reduce the training complexity and the cost of data anno-
tation. Experiments showed that they can provide fairly 
good counting accuracies (up to 90%) [13, 15–17]. How-
ever, the regression- and classification-based methods 
may suffer from overfitting problems because the CNN 
models are generally much more complex than training 
objectives (a numeric value or several classes). Careful 

designing of network architecture would be necessary 
for good performance and generalizability. In addition, 
the spatial information of flowers/floral structures can-
not be obtained from regression/classification results, 
which limits the potential for flower distribution analy-
sis and actuation-based applications such as flower thin-
ning in crop load management. To address or mitigate 
these issues, the detection-based counting strategy has 
been used in very recent studies [12, 18–20]. The detec-
tion-based counting is a two-stage strategy that detects 
flowers/floral structures in images and then counts the 
number of detections. A study reported that the detec-
tion-based counting could provide better counting accu-
racy and robustness than regression-based ones, showing 
the greatness of the detection-based strategy for flower 
counting over a growing season [12]. Among many stud-
ies for flower detection and counting in the past two 
years, only three of them used the developed counting 
methods to monitor plant flowering during the entire 
flowering period to characterize key flowering patterns 
such as heading date [13, 15, 19]. All three studies dem-
onstrated high accuracies of heading date estimation (up 
to an error of 2  days) because of superior performance 
of deep learning models for flower detection and count-
ing. On the other hand, having only few studies capable 
of monitoring plant flowering reiterates the challenges of 
intensive data collection and analysis over an extended 
period for the characterization of flowering patterns.

It is also noteworthy that nearly all studies focused on 
the crops with simple shoot architecture where flowers/
floral structures form  on top of plant canopies, which 
significantly simplifies data collection and flower detec-
tion and counting. In contrast, cotton plants have much 
more complex shoot architecture and can form flowers 
across the entire plant, presenting extreme challenges 
to the detection and counting of cotton flowers. To date, 
only one study reported a two-stage approach to detect 
and count blooms (white flowers) in cotton plots from 
aerial images. The approach first segmented candidate 
regions of blooms using a thresholding method, and sub-
sequently classified the candidate regions as bloom or 
non-bloom using a custom CNN to count the number 
of blooms in individual cotton plots. Although the two-
stage approach showed some success in counting blooms, 
it had a major limitation in that a considerable portion of 
blooms could not be captured by aerial images because of 
occlusions, resulting in a relatively large underestimation 
of bloom counts. In addition, this study only measured 
bloom counts for several days, lacking the capability for 
flowering pattern analyses over a long flowering period. 
To overcome the aforementioned limitations, we need 
improvements and modifications in both technical 
and agronomic aspects. For the technical aspect, it is 
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necessary to explore the use of side-view proximal imag-
ing and CNN-based object detection to detect and count 
individual blooms over an entire flowering period. For the 
agronomic aspect, the planting scheme needs to be mod-
ified from the conventional plot-based layout to a single-
plant layout (SPL) where individual plants are treated as 
plots with a wide row spacing of 1.52 m. In such a plant-
ing scheme, flower occlusions due to dense plant cano-
pies can be minimized to increase the flower  visibility 
and therefore detection and counting accuracies. Based 
on our previous studies [22], SPL-based experiments 
could provide phenotypic data revealing significant dif-
ferences among genotypic categories or genotypes, show-
ing the great potential of studying flowering patterns for 
cotton in the field.

The goal of our study was to develop a deep learning-
based approach to characterize flowering patterns of 
cotton plants in the field. Specific objectives were to (1) 
develop a multi-view imaging system that can acquire 
cotton plant images in a high throughput manner; (2) 
develop a deep learning-based approach (DeepFlower) 
to detect and count emerging blooms and to character-
ize flowering patterns for individual plants; and (3) evalu-
ate the accuracy and efficacy of the developed approach 
for the identification of differences in flowering patterns 
among genetic categories and genotypes.

Results
Representative detection results
Generally, the Faster RCNN model (FrRCNN5-cls) could 
accurately detect plants and emerging blooms under dif-
ferent illumination, bloom load, and occlusion conditions 
(Fig. 1). If a proper viewing angle was used, the enclosure 
mostly provided uniform and bright illumination (e.g., 
Fig. 1a). The illumination could be an issue as the enclo-
sure did not fully cover the imaging area. When the solar 
zenith angle was steep or the camera was configured to 
face the enclosure entrance, the field of view (FOV) of 
cameras could include both shaded and strongly illumi-
nated areas. Consequently, collected images could have 
very dark illumination for the shaded part, making it dif-
ficult to identify objects with low reflectance (e.g., the 
plant in Fig. 1b). The FrRCNN5-cls model learned feature 
representations to detect the plant, showing its capability 
to handle object variations because of extreme illumina-
tion changes. In addition to illumination, bloom load also 

varied dramatically during the entire flowering process. 
Plants would have fewer emerging blooms in early and 
late stages than the peak flowering time. The FrRCNN5-cls 
model provided accurate detection results for both cases, 
showing the efficacy of using a single model to process 
images of plants in different flowering stages. Occlu-
sion was another great challenge for detecting emerging 
blooms. Cotton plants were branchy and leafy during the 
flowering period, so blooms were frequently occluded 
by plant leaves and branches. Depending on the cultivar 
and development stages, the occlusions varied in direc-
tion and severity (see Fig. 1e, f ), which introduced issues 
for object detection (especially by using traditional image 
processing). The FrRCNN5-cls model learned effective fea-
tures to describe and detect occluded emerging blooms, 
especially some heavily occluded emerging blooms 
(Fig.  1f ). All of these successful cases demonstrated the 
capability of the FrRCNN5-cls model to detect plants and 
emerging blooms in images with varied conditions.

The FrRCNN5-cls model, however, could not process 
certain cases. The abaxial surface of leaves has a higher 
reflectance than the adaxial surface (Cordon and Lagorio, 
2007), showing a similar contrast pattern with emerging 
blooms (brighter than adjacent areas). When the abaxial 
surface of leaves was exposed to the camera and sur-
rounded with bracts, these leaves could not be differen-
tiated easily from true emerging blooms by even human 
observation (Fig.  1g), thereby generating false positive 
detections of emerging blooms. In addition, because of 
a high reflectance, emerging blooms under strong illu-
mination lost the contrast with background and detailed 
textures, and thus became considerably more difficult 
to be identified in the images. In this situation, emerg-
ing bloom objects were not accurately detected by the 
FrRCNN5-cls model.

Results of ablation experiments
Labeling strategy
Two labeling strategies were used in this study: 3-class 
and 5-class labeling strategies. The 3-class labeling strat-
egy included the classes of target plant, emerging bloom, 
and non-bloom objects, whereas the 5-class labeling 
strategy further split the non-bloom class into three 
classes, resulting in five classes of target plant, emerging 
bloom, region with specular reflectance, opened boll, and 
others.

(See figure on next page.)
Fig. 1  Representative results of plants and emerging blooms detected by the trained Faster RCNN (FrRCNN5-cls) model. The top three rows 
demonstrate successful detections under different illumination, bloom load, and occlusion conditions. The bottom row shows two failed cases of 
emerging bloom detection, one because back-sided leaves had higher reflectance and were identified incorrectly as emerging blooms, and the 
other because a lower contrast between emerging blooms and the background could lead to mis-detection
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Overall, the model (FrRCNN5-cls) trained using the 
5-class labeling strategy had improved performance 
(mean average precision, mAP and average precision 
per class, AP) than that (FrRCNN3-cls) trained using the 
3-class labeling strategy (Fig. 2). In particular, the AP of 
emerging bloom detection increased by 3% by using the 
5-class labeling strategy. Compared with 3-class labe-
ling, the 5-class labeling strategy could more efficiently 
split classes with similar appearance. Consequently, the 
variation within a class would become smaller than the 
differences between classes, providing benefits for train-
ing deep neural networks. For instance, there could be 
several types of non-bloom objects that had a distinct 
appearance. There were also some bright gaps between 
plant branches and leaves, which formed regions that had 
a similar appearance to emerging blooms, whereas there 
were some other objects (e.g., camera) that looked dis-
similar from emerging blooms (see “specular reflectance” 
and “others” objects in Additional file  1: Figure S1). If 
these regions/objects were labeled with different classes, 
it would be relatively easier for deep neural networks to 
learn features to form classification boundaries for sepa-
rating classes with similar appearance. Otherwise, deep 
neural networks might not learn effective features, result-
ing in misclassification between regions/objects with 
similar appearance.

It is noteworthy that the AP score of the bloom class 
was 0.72 even by using the 5-class labelling strategy, 
meaning that models could detect irrelevant regions as 
blooms and lead to the over-detection issue. Thus, by 
using a high classification confidence score (0.7 in this 
study), we expect to mitigate this issue and provide accu-
rate detection results for bloom counting.

Counting strategy
Overall, for each image, the “plant-based counting” 
strategy provided improved accuracy over the “whole 

image-based counting” strategy (Fig.  3). Although the 
regression slope calculated using the “plant-based count-
ing” strategy was slightly higher than that calculated 
using the “whole image-based counting” strategy, a 
higher correlation and lower root mean squared errors 
(RMSE) were achieved by using the “plant-based count-
ing” strategy, indicating improved counting accuracy 
(Fig.  3a and d). These improvements were primarily 
because the “plant-based counting” strategy made more 
samples in the counting error range within ± 1, especially 
a 3% increase with no counting difference (Fig.  3b and 
e). As an absolute counting error of one bloom might be 
substantial when plants had very few emerging blooms 
(e.g., early and late flowering stages), relative counting 
errors were calculated for samples with counting errors 
less than one bloom (Fig. 3c and f ). Compared with the 
“whole image-based counting” strategy, the “plant-based 
counting” strategy increased the number of samples 
with no relative counting error by 5% and dramatically 
reduced the number of samples with relative counting 
errors over 20%. It is also noteworthy that the “plant-
based counting” strategy dramatically improved the 
counting accuracy for samples that had a zero count with 
the manual method but a non-zero count with the imag-
ing method (denoted by asterisks in Fig. 3c and f ).

Although the FrRCNN5-cls and the “plant-based count-
ing” strategy demonstrated improved performance on 
emerging bloom detection and counting, respectively, 
significant counting errors were identified by jointly 
using the FrRCNN5-cls and the “plant-based counting” 
strategy as a counting approach (Fig.  4). For absolute 
counting, the combination of the FrRCNN5-cls model and 
the “plant-based counting” strategy provided accurate 
measurements (less than one bloom) for plants with zero 
to four emerging blooms per day (approximately 82% of 
cases). Absolute counting errors substantially increased, 
however, when plants had five or more emerging blooms 

Fig. 2  Detection accuracies (mean average precision and average precision per class) on the validation dataset by using models trained with 
datasets labeled by the 5-class (FrRCNN5-cls) and 3-class (FrRCNN3-cls) methods, respectively. The mean average precision (mAP) was calculated over 
the bloom and plant classes only
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(approximately 18% of cases). On average, the developed 
counting approach also reached a plateau of 6 blooms per 
plant per day. Thus, when plants reached peak flowering 
time (over 10 emerging blooms per day), absolute count-
ing errors were over 4 blooms per plant per day, which 
was equivalent to about 50% relative counting errors. 
This occurred primarily because of the assumption in the 
developed counting approach that a single image from 
a particular viewing angle would capture most (or even 
all) emerging blooms on a plant on one day, and thus the 
counting approach could obtain the maximum bloom 
count from one out of four images for a single plant. This 
assumption generally held true in flowering stages when 
plants had a small number of emerging blooms per day, 
so the counting approach provided accurate counts for 
most plants. This assumption, however, was invalid dur-
ing the peak flowering time when plants had a large num-
ber of emerging blooms per day. Furthermore, emerging 
blooms were distributed around plant canopies, so a sin-
gle image from any viewing angle would not be sufficient 

to capture all blooms on a plant, resulting in significant 
underestimation of absolute bloom counts.

The significant underestimation of absolute bloom 
counts, however, showed a limited influence on the accu-
racy of calculating cumulative percentages of opened 
blooms. Errors in the cumulative percentage of emerging 
blooms were less than 2% irrespective of flowering stages. 
There were two possible reasons. First, images with sig-
nificant underestimation occupied only a small portion 
(~ 2.72%) of the entire dataset, meaning that on average, 
the large underestimation only affected individual plants 
on few days. Thus, a limited influence was observed on 
cumulative percentage of opened blooms. Second, cumu-
lative percentage was the ratio of total opened blooms 
from the beginning of flowering to a specific day and 
total opened blooms over the flowering period. The 
underestimation of absolute counts would be included in 
both the numerator and denominator of the cumulative 
percentage, and thus mitigated somewhat. This would be 
particularly true if a genotype could intensively produce 

Fig. 3  Counting accuracies calculated using “plant-based counting” (top row) and “whole image-based counting” (bottom row) strategies, 
respectively, for individual plants on each of the 26 scanning dates (a total of 2834 data points). a and d are linear regression results between the 
imaging derived and manual counts. b and e are the histograms of counting errors. C and F are the histograms of relative counting errors for 
samples with an absolute counting error of less than 1. In c and f, the numbers on top of the bars indicate the relative improvement (over 5%) of 
using the “plant-based counting” strategy over the “whole image-based counting” strategy. The asterisk denotes samples that had a zero count with 
the manual method but a non-zero count with the imaging method
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blooms (more than 10 blooms daily) in a short time of 
period. In such a case, a relatively similar scaling factor 
was introduced to both the numerator and denominator 
of the cumulative percentage, which largely reduced the 
underestimation effect. Therefore, the use of cumulative 
percentage could reasonably address a concern in that 
the developed method might have different accuracies 
for genotypes with different flowering patterns. None-
theless, the high accuracy of the calculated cumulative 

percentage of opened blooms could hold great potential 
for flowering characterization.

Results of flowering characteristics and statistical analyses
Representative flowering curves
As the developed counting approach underestimated the 
number of emerging blooms on plants during the peak 
flowering time, the absolute bloom counting curves gen-
erated using imaging-derived counts also showed large 

Fig. 4  Errors of absolute counting (top chart) and cumulative percentage (bottom chart) for emerging blooms per plant by using the FrRCNN5-cls 
and the “plant-based counting” strategy. For absolute counting, plants were grouped into 13 categories based on the number of emerging blooms 
(0 to 12) on those plants on a particular date. For cumulative percentage, plants were grouped into 10 categories (from 0–10% to 90–100%) 
of opened blooms on those plants on a particular date. The number on top of each grouped bar indicated the difference between counts (or 
cumulative percentage) calculated using the imaging and manual methods
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differences from those generated using manual counts 
during that time (Additional file 1: Figure S2). This sug-
gests that the curves should not be used for quantita-
tive analyses such as the maximal number of emerging 
blooms per plant over a growing season. The flowering 
curves derived by the imaging method, however, gen-
erally showed a similar trend as the curves derived by 
the manual method, suggesting their utility for certain 
qualitative analyses. For instance, the field received pre-
cipitation (approximately 8 mm of rain) and experienced 
chilling temperatures (approximately 10  °C cooler than 
the monthly-average temperature) on 16 September 2018 
(95 DAPs) and 24 September 2018 (103 DAPs), respec-
tively. After the weather changed, the plants mostly had 
a reduced number of emerging blooms on the next sam-
pling day in flowering curves derived by both the manual 
and imaging methods. Certain genotypes (e.g. Exotic 
T0368BC3MDN GH196 and Elite DES 56), however, did 
not show such a pattern, perhaps indicating that they are 
more resistant to severe weather changes than other gen-
otypes. (Additional file 1: Figure S3).

Cumulative flowering curves generated using bloom 
counts derived by the imaging method were very simi-
lar to those generated using manual counts (Fig. 5). The 
same correspondence was also observed for individual 
genotypes (Additional file  1: Figure S4). This suggests 
that the curves derived using the imaging method could 

potentially be used for both qualitative and quantitative 
characterization of flowering patterns. Two distinctive 
patterns were observed from the curves. First, exotic G. 
hirsutum presented larger within-group variation than 
elite G. hirsutum and G. barbadense. This was because 
the exotic group contained wild genotypes that are 
diverse in their flowering patterns, whereas elite G. hir-
sutum have been selected for flowering patterns that con-
ferred optimal yield. There was only one cultivar in the G. 
barbadense group, which should not present large varia-
tion. Second, both exotic and elite G. hirsutum showed a 
relatively steeper slope than G. barbadense, indicating a 
potential difference in flowering duration between vari-
ous species.

Statistical analysis results
Significant interaction effects were presented on 
extracted flowering characteristics (first bloom date, 
flowering start date, and flowering duration) between the 
genotype and transplanting date, suggesting the neces-
sity of analyzing flowering patterns for each transplant-
ing batch separately (see Additional file 1: Tables S1–S6 
for detailed ANOVA analysis tables). As only the much 
larger first transplanting batch showed statistical signifi-
cance among genetic categories or genotypes, successive 
sections focused on data of the first transplanting batch.

Flowering characteristics calculated using the flower-
ing curves derived by the imaging method showed the 
same statistical power in differentiating the three genetic 
categories as those calculated using the flowering curves 
derived by the manual method (Fig.  6). For the first 
bloom date and flowering start date, although G. bar-
badense showed the lowest values with the least stand-
ard deviation, it could not be statistically separated from 
the G. hirsutum groups for two reasons. First, exotic G. 
hirsutum contained diverse genotypes, presenting large 
variation that covered the other two groups. Second, 
G. barbadense had only two replicates in the first trans-
planting batch, which had limited statistical power to be 
differentiated from other groups. For flowering duration, 
however, G. barbadense was significantly longer than the 
G. hirsutum groups, which was an expected flowering 
pattern for G. barbadense (Pima cotton) in the study area.

While the order of individual genotypes was slightly 
different, flowering characteristics derived by the imag-
ing and manual methods showed very similar statistical 
patterns among genotypes (Fig. 7). Genotype T0368BC-
3MDN.GH196 had the first bloom (first bloom date) 
and entered into the flowering period (flowering start 
date) significantly later than other genotypes, suggest-
ing that it could be used for studying genes and gene 
regions controlling flowering time. In addition, geno-
type T0368BC3MDN.GH196 had a significantly shorter 

Fig. 5  Cumulative flowering curves derived using imaging and 
manual counts for three genetic categories (elite G. hirsutum, exotic 
G. hirsutum, and G. barbadense). Group mean values are drawn in 
lines (solid and dashed lines for results derived by the imaging and 
manual methods, respectively), and group standard deviations are 
indicated by shaded areas (magenta and blue for results derived by 
the imaging and manual methods, respectively)
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flowering duration than other genotypes. This occurred 
likely because of environmental effects. Overall, air 
temperature decreased dramatically (more than 15  °C) 
after 120 DAPs, leading to a sudden drop of emerging 
blooms. Although several blooms opened after 120 DAPs 
(see Additional file  1: Figure S3), the freezing tempera-
ture might cause an early termination of flowering for 
T0368BC3MDN.GH196. Some other genotypes also pre-
sented significant differences in flowering duration, such 
as genotype T1046cBC1.GH212 for a longer duration 
and genotypes T0281aMDN.GH198 and T1046aBC1.
GH210 for a shorter duration. It should be noted that 
genotype Pima.S6.2011.3841 had a statistically longer 
flowering duration using the characteristic derived 
from manual counts but not by that derived from imag-
ing counts, which was the only difference in the statis-
tical patterns between the two methods. This possibly 
occurred because manual counts would not miss any 

emerging blooms on a plant, having a relatively stronger 
capability to identify differences between genotypes with 
fewer replicates.

Based on the estimation, each genotype should have 
at least 2 replicates to ensure adequate statistical power 
to identify the significance of the first bloom date and 
flowering start date, or at least 3 replicates to ensure the 
statistical power to identify the significance of flower-
ing duration among the 23 genotypes (Table 1). As there 
were only 2 replicates per genotype Pima.S6.2011.3841, 
no significant difference in flowering duration was iden-
tified between Pima.S6.2011.3841 and other genotypes, 
which agreed with the experimental result. If the varia-
tion because of genotype remains the same as that in the 
first transplanting batch, using more genotypes (e.g., 200 
genotypes in a population) would slightly increase the 
statistical power for identifying significance among geno-
types. Flowering curves derived by the imaging method, 

Fig. 6  Boxplot of flowering characteristics (first bloom date, flowering start date, and flowering duration) among three genetic categories (elite 
G. hirsutum, exotic G. hirsutum, and G. barbadense) in the first transplanting batch. Groups with a statistically significant difference (p < 0.05) are 
denoted with different letters, and group mean values of each characteristic are sorted alphabetically
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Fig. 7  Boxplot of flowering characteristics (first bloom date, flowering start date, and flowering duration) among 23 genotypes in the first 
transplanting batch. Genotypes with statistically higher values are denoted by “ + ”, whereas genotypes with statistically lower values are denoted 
by “−”. Differences were inferred at the significance level of 0.05
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therefore, would remain effective for flowering pattern 
analyses in large-scale experiments.

Data collection frequency
Average differences between mean cumulative flower-
ing curves derived by the imaging and manual methods 
increased when data collection frequency was reduced 
(Table 2). Generally, the increase of average curve differ-
ence was inversely proportional to the reduction of data 
collection frequency. This suggests that the temporal res-
olution of data (determined by data collection frequency) 
is also an important factor for the accuracy of cumula-
tive flowering curves. With a higher temporal resolution, 
daily bloom counts could be obtained more frequently, 
which could improve the accuracy of calculating the total 
number of opened blooms and cumulative percentages of 
opened blooms over a flowering period.

Statistical results showed that flowering characteristics 
extracted from the subset with the frequency of twice per 
week had the same statistical power in identification of 
genotypic groups as those extracted from the original 
dataset (see Additional file  1: Figure S5). The statistical 
power, however, was lost when the data collection fre-
quency was further reduced to once per week (compare 
flowering duration in Additional file  1: Figure S6 and 
Fig. 6). This suggests that an optimal data collection fre-
quency would be twice per week for the current study, 
which can provide adequate statistical power in genotype 

differentiation and dramatically reduce the workload of 
field data collection.

Discussion
The DeepFlower approach demonstrated the  efficacy of 
detecting and counting emerging blooms in images to 
characterize flowering patterns for different genetic cat-
egories or genotypes. Flower characteristics derived by 
the imaging method showed an almost identical capa-
bility for identifying significance among genotypes with 
manual counts, which further validated the effectiveness 
of the DeepFlower approach for studying flowering pat-
terns. In particular, the DeepFlower approach success-
fully revealed flowering patterns for cotton plants that 
have a complex canopy architecture (and thus difficulties 
of emerging bloom detection and counting) and there-
fore should transfer well to other flowering plants that 
have the same or similar canopy architecture. This sug-
gests that the combination of the image acquisition sys-
tem and DeepFlower approach can be an effective and 
efficient tool for characterization of flowering patterns 
for plants in the field, holding great potential for identify-
ing gene loci that control flowering behavior for different 
plant genotypes.

Although the DeepFlower approach showed promis-
ing results for extracting flowering characteristics, sev-
eral aspects can be further improved or explored. First, 
the scanning throughput is relatively low for the cur-
rent configuration. The platform ran at approximately 
0.25 m/s and took around 25 min to complete the scan-
ning of the present experimental field (approximately 
0.05 ha), resulting in a scanning throughput of 0.12 ha/h. 
This throughput might not be adequate for extremely 
large experiments, e.g., that involves up to several thou-
sand genotypes with at least two replicates per genotype 
(up to a couple of hectares). Challenges, however, would 
need to be identified to balance the platform cost (cam-
era with high resolution and fast frame rate), image qual-
ity (blurry), and scanning throughput (platform moving 
speed). Second, the present DeepFlower approach over-
simplifies the counting task by using only one single 
image with the maximum count among the four view-
ing images. The approach depends upon the assump-
tion that most or all emerging blooms can be seen from 
a single one of these four viewing angles. Experimental 

Table 1  Estimated number of  replications per  genotype 
at the significance level of 0.05 and power of 0.95

FBD shorts for first bloom date, FSD shorts for flowering start date, and FD shorts 
for flowering duration. The asterisk denotes the estimation for one population 
in a NAM study

Trait Batch Effect size F Number 
of genotypes

Estimated 
number 
of replications

FBD 1 1.18 22 2

FBD* 1 1.18 200 2

FSD 1 1.52 22 2

FSD* 1 1.52 200 2

FD 1 0.88 22 3

FD* 1 0.88 200 2

Table 2  Average differences between cumulative flowering curves derived by the imaging and manual methods

Data collection frequency Exotic G. hirsutum Elite G. hirsutum G. barbadense

Once per week (10 dates) 10.96% 9.92% 12.01%

Twice per week (20 dates) 3.79% 3.85% 4.23%

Three times per week (26 dates) 1.03% 1.21% 1.27%
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results, however, showed that this assumption is invalid 
when plants enter into peak flowering time, leading to 
a significant underestimation of bloom counts. Conse-
quently, absolute bloom counting curves cannot be used 
for quantitative analysis of flowering patterns. A viable 
solution is to integrate 3D imaging so that 2D detections 
can be projected onto a global 3D space for counting. For 
instance, photogrammetric methods (e.g., structure from 
motion) can be used to reconstruct 3D point clouds using 
images from multiple viewing angles, so that for a single 
plant emerging bloom detections can be projected from 
different 2D images onto a global 3D space to remove 
duplicated detections (and thus counts). In the present 
study, preliminary tests using the collected images sug-
gested that images from four viewing angles (approxi-
mately 90° apart from each neighboring angle) could not 
provide adequate image overlap to reconstruct 3D point 
clouds of a single plant, and thus the 2D to 3D projection. 
It is therefore necessary to conduct successive studies to 
explore the optimal image collection configuration (e.g., 
viewing angles and number of images) for 3D reconstruc-
tion using photogrammetric methods. Another way is to 
fuse 2D images with 3D point clouds acquired using sep-
arate instruments (e.g., LiDARs), which enables the 2D to 
3D projection. This will also require considerable efforts 
to develop new sensing systems for data collection and 
algorithms for data fusion (especially multi-source het-
erogeneous data fusion). Last, although the DeepFlower 
approach demonstrated great performance for the SPL-
based experiment, it could not fully address the flower 
counting problem in plot-based layouts (either single- or 
double-plot per row) that have been widely used in cot-
ton research and production. This could raise particular 
concerns on transferring findings and knowledge from 
the SPL-based experiments to practical production sys-
tems. Thus, in the future, it would be necessary to fur-
ther explore the possibility of combining engineering, 
agronomy, genetics/genomics, and statistics approaches 
for an interdisciplinary solution that can fully address 
the flower counting problem in an environment closer to 
practical situations.

Conclusions
The developed imaging approach (combination of the 
image acquisition system and DeepFlower approach) can 
be an efficient and effective tool for detecting and count-
ing blooms on plants in the field, demonstrating promis-
ing results for the characterization of flowering patterns. 
In particular, the developed approach can potentially be 
used for many other flowering plants that have a simpler 
or similar canopy architecture, providing potential for 
deepening the understanding of the flowering process in 
general. Future studies will be focused on the integration 

of 3D imaging to further improve the counting accuracy 
and expand the capability of mapping bloom positions on 
plants. Moreover, it is needed to incorporate the devel-
oped approach with advanced statistics methods and 
experimental designs for the cotton flower counting in 
conditions closer to practical scenarios such as plot-
based layouts.

Materials and methods
Image acquisition
High throughput imaging system and experimental design
A previously developed ground mobile imaging system 
(“GPhenoVision” by Jiang et  al. [22]) was modified with 
a multi-view color imaging module for data acquisition 
(Fig. 8a). The multi-view color imaging module consisted 
of four consumer grade mirror-less cameras (X-A10, 
Fujifilm Holdings Corporation, Tokyo, Japan) that faced 
towards the center of the system enclosure approximately 
90° apart from neighboring cameras. To avoid potential 
issues of image quality (e.g., blurry images) because of 
high-frequency vibration, an inexpensive camera mount 
was manufactured by combining a camera ball mount 
and a vibration isolator, providing the flexibility of view-
ing angle configuration and the capability of isolating 
high-frequency vibrations (Fig.  8b). A custom trigger 
device was developed to synchronize triggering signals 
to all four cameras. The trigger device and an RTK-GPS 
(Cruizer II, Raven Industries Inc., Sioux Falls, SD, USA) 
were connected to a laptop computer in which a custom 
LabVIEW program ran to automatically save timestamps 
of triggering signals and RTK-GPS records. The devel-
oped data acquisition system acquired four color images 
at a time with RTK-GPS information.

Cotton seeds of 24 genotypes (from 3 genetic catego-
ries including Gossypium hirsutum, Gossypium hirsutum, 
and Gossypium barbadense) were planted in pots in a 
greenhouse on 13 June 2018 to obtain cotton seedlings. 
An experimental field was transplanted with 132 cotton 
seedlings (12 plants per row × 11 rows) in a SPL where 
individual plants (treated as one plot) had an in-row and 
across-row width of 1.52  m (Fig.  8c). Two batches of 
transplanting were conducted. The first batch of trans-
planting was conducted on 26 June 2018 (13  days after 
planting, DAPs), yielding 75 (out of 89 survived seed-
lings) healthy plants over the growing season. The sec-
ond batch of transplanting was conducted on 5 July 2018 
(22 DAPs), yielding additional 41 (out of 43 survived 
seedlings) healthy plants. A total of 116 plants from 23 
genotypes, therefore, were used in the present study. The 
modified GPhenoVision system imaged the field in a con-
tinuous scanning mode every 2  days (or 3  days if over 
weekends) during the flowering period from 20 August 
2018 (68 DAPs) to 24 October 2018 (133 DAPs).
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DeepFlower for characterization of flowering patterns
Image preprocessing and labeling
Collected images were segregated to individual plants 
based on the collection location information, generating 
a dataset containing 8666 images collected for 116 plants 
on 26 dates. A total of 7 plants were randomly identified 
and all 475 images of those 7 plants were used for man-
ual annotation with bounding boxes of five classes (see 
Additional file 1: Figure S1). The five classes included the 
target plant, emerging bloom, opened cotton boll, region 
with specular reflectance, and others (objects other than 
the four classes). This labeling strategy was named as the 
5-class labeling strategy. The 475 images were randomly 
shuffled to form training (380 images) and testing (95 
images) datasets for training and evaluating object detec-
tion models. It should be noted that the 475 annotated 
images were exclusively used for training and validating 
the detection models. Analyses for the counting  perfor-
mance of the DeepFlower approach would not use the 
475 images to avoid potential biases in the results. For 
the flowering pattern analyses, flowering curves of the 7 
plants derived from the DeepFlower approach were still 
used to ensure adequate replicates in statistical analysis.

Bloom detection
A deep learning-based approach (DeepFlower) was 
developed to detect and count emerging blooms in the 
collected images (Fig. 9). The approach consisted of three 
major sections including object detection, emerging 
bloom counting, and flowering characterization.

Object detection was the key of the DeepFlower 
approach. Because of the success of many object detec-
tion applications [23], the Faster RCNN model was used 
as the object detector in the present study (see Object 
detector in Fig.  9). The architecture contains a feature 
extractor, a region proposal network (RPN), and a clas-
sification and regressor module. The feature extractor is 
usually a deep CNN network, which extracts informative 
feature representations from the raw input images in a 
hierarchical fashion. The RPN uses the extracted features 
to generate potential regions of interest (ROIs), and the 
classification and regressor module uses the features in 
each ROI to identify the ROI class and refine the coordi-
nates of ROI bounding box. As images contained diverse 
object classes with a similar appearance, the Incep-
tion ResNet v2 was used as a feature extractor due to its 
strong capability of learning adequate features to differ-
entiate similar object classes.

As a limited number of labeled images were available, 
a transfer learning technique was used to facilitate model 
training. A Faster RCNN model was initialized using 
weights pretrained on the Common Objects in Context 
dataset (aka. COCO dataset, a large annotated image data-
set open to the public) and fine-tuned on the training data-
set for bloom detection. As the Faster RCNN model was 
trained using images labeled by the 5-class labeling strat-
egy, the model was named as FrRCNN5-cls for conciseness. 
Model training was performed using a mini-batch stochas-
tic gradient descent (SGD, batch size was 2) by the Adam 
optimizer with an initial learning rate of 5 × 10–5, a dropout 

Fig. 8  Diagram of the data acquisition system and field layout. a GPhenoVision system with the color imaging module for acquiring four-view 
images of plants. b Implementation of a specially designed camera mount for isolating high frequency vibration. c The single plant layout (SPL) field 
used in the present study
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rate of 0.5 for the RPN and classification and regressor 
modules, and a weight decay of 1 × 10–3. Based on prelimi-
nary experiments, a total 50,000 training steps (equivalent 
to 167 epochs) were used to ensure the model convergence 

for the bloom detection task. Model checkpoints were 
saved after every 5,000 training iterations. Checkpoints 
with the best validation performance were selected for suc-
cessive bloom counting analyses, which mimics the early 

Fig. 9  DeepFlower processing pipeline for detection, counting, and characterization of flowering patterns using deep learning method and color 
images
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stopping strategy to avoid potential overfitting issues. Two 
computing nodes (14 2.8 GHz CPU cores, 120 GB RAM, 
and Tesla V100 16 GB GPU memory) hosted by the Geor-
gia Advanced Computing Resource Center (GACRC) were 
used for model training under the operating system of Cen-
tOS 7.5 with Tensorflow 1.12.0.

The trained Faster RCNN model could detect up to 100 
bounding boxes of target plant and emerging blooms with 
classification confidence scores in a given image. If the 
confidence score was less than an arbitrary threshold (0.7 
in the present study), a detection was removed from the 
detection result. Consequently, the final detection results 
contained only detections with a high classification confi-
dence, which were used for bloom counting.

Bloom counting
A counting strategy was developed to use detection results 
from the Faster RCNN model to count the number of 
emerging blooms for a plant on one day (see Counting 
in Fig.  9). The strategy counted the number of emerging 
blooms for a plant in two steps. In the first step, emerg-
ing bloom detections were treated as blooms within the 
target plant if the centroids of their bounding boxes were 
within the bounding box of the target plant detection. Sub-
sequently, the number of emerging blooms on the target 
plant was obtained for each of the four images acquired for 
a plant on one day. This provided an accurate bloom count 
for a plant from each of the four viewing angles. In the 
second step, we hypothesized that most (or all) emerging 
blooms should be seen from one of the four viewing angles, 
and thus the strategy selected the image (viewing angle) 
that provided the maximum bloom count from the four 
images as the number of emerging blooms for a plant on 
that day. Based on preliminary experiments, the maximum 
bloom count substantially outperformed the total bloom 
count and the average bloom count from the four images of 
a plant. As the first step only considered emerging blooms 
within a target plant, this counting strategy was summa-
rized as the “plant-based counting” strategy.

Flowering characterization
The numbers of emerging blooms per plant per day over 
the flowering period were used to derive flowering curves 
for individual plants (see Characterization in Fig.  9). A 
flowering curve was defined as the cumulative percentage 
of opened blooms over the growing time (in DAPs). Cumu-
lative percentage of opened blooms on individual days was 
calculated using Eq. 1.

(1)Pk =

∑
k

i=0
Ci

∑
N

i=0
Ci

where Pk is the cumulative percentage of opened 
blooms for a plant on the kth DAPs, Ci is the count of 
emerging blooms for that plant on the ith DAPs, and N 
is the end day of the flowering period.

Three critical points were defined on a flowering 
curve, including first bloom date (FBD) when the first 
bloom was identified, flowering start date (FSD) when 
at least 5% of emerging blooms occurred on a plant, and 
flowering end date (FED) when at least 95% of emerg-
ing blooms occurred on a plant. Three flowering char-
acteristics were derived from the three critical points. 
FBD and FSD were directly used as flowering charac-
teristics, whereas FSD and FED were used to calculate 
flowering duration (FD), which was important for many 
applications related to improvements of environment 
adaptability.

Ablation experiments
Labeling strategy
While image labeling seems straightforward, it could sig-
nificantly affect the performance of trained deep neural 
networks. For the bloom detection task, a simple class 
definition was used to label images for training, including 
only three classes i.e., target plant, emerging bloom, and 
non-bloom. The non-bloom class contained all regions 
that were labeled other than plant and emerging bloom 
classes. This labeling strategy has been mostly used by 
many deep learning applications, which annotated only 
objects of interest. For brevity, this labeling strategy was 
named as the 3-class labeling strategy. Accordingly, the 
same training process was applied to train another Faster 
RCNN model (FrRCNN3-cls) using images labeled by the 
3-class labeling strategy. This model was compared with 
the FrRCNN5-cls model in terms of detection accuracy.

Counting strategy
The “plant-based counting” strategy would provide an 
accurate count of emerging blooms on a target plant in 
an image, but it required additional efforts on labeling 
(e.g., annotating target plants in images) and computing 
(e.g., judgement of emerging bloom location within or 
outside of a target plant). A simplified counting strategy 
was to directly use the number of emerging bloom detec-
tions as the count for a plant in an image, which might 
save those labeling and computing efforts. This simplified 
strategy could be valid, because images were captured 
for a single plant and might not contain much informa-
tion of neighboring plants. As this strategy would use all 
emerging bloom detections in an image, it was named as 
the “whole image-based counting” strategy. An ablation 



Page 16 of 17Jiang et al. Plant Methods          (2020) 16:156 

experiment was conducted to compare the two counting 
strategies in terms of counting accuracy.

Statistical analysis
For detection and counting accuracies, simple linear 
regression analyses were performed between imag-
ing derived and manual counts for the 116 plants on 26 
dates. No interception term was used for those analyses. 
The slope of regression equation, coefficient of determi-
nation (R2), and root mean squared error (RMSE) were 
used as indicators to evaluate performance. In addition, 
error analyses were conducted for the optimal counting 
approach (the combination of the best detection model 
and counting strategy) for both absolute counting and 
cumulative percentage calculation.

For flowering characteristics, analysis of variance 
(ANOVA) analyses were performed on the three flow-
ering characteristics (FBD, FSD, and FD) among three 
genetic categories and genotypes, respectively, exploring 
differences in flowering patterns between various culti-
vated and exotic species. All tests were performed in R 
using a significance level of 0.05.

An important aspect of the present study is to guide 
the design of future large-scale experiments. The mini-
mum replication number, therefore, was estimated for 
each flowering characteristic for experiments that are 
likely to include at least 200 genotypes from one popu-
lation in a nested association mapping (NAM) study for 
cotton. Estimation was performed using the one-way 
ANOVA model with an effect size calculated using the 
present study data, a significance level of 0.05, and a sta-
tistical power of 0.95 in the G*Power software [24].

Data collection frequency
Data collection frequency is an important factor in stud-
ies related to plant flowering patterns because it deter-
mines the temporal resolution of data and the cost of data 
acquisition. An optimal frequency would provide ade-
quate information to discern flowering patterns among 
groups and reduce investments in data collection and 
management. To investigate this factor, the data collec-
tion frequency of the original dataset was reduced from 
three times per week (approximately 2–3  days between 
two sampling dates) to twice per week (approximately 
3–4 days) and once per week (7 days), which formed two 
subsets. The two subsets were analyzed using the opti-
mal processing approach to derive cumulative flowering 
curves and flowering characteristics. Average differences 
were calculated between the cumulative flowering curves 
derived by the imaging method and manual method with 
different data collection frequencies, evaluating effects 
caused by the difference in data collection frequency. In 

addition, extracted flowering characteristics were used in 
statistical analyses to examine the statistical power of dif-
ferent data collection frequencies. Through these efforts, 
the optimal data collection frequency would be deter-
mined and can be used to guide data collection in future 
studies.
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