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Abstract 

Background:  Plant population density is an important factor for agricultural production systems due to its substan-
tial influence on crop yield and quality. Traditionally, plant population density is estimated by using either field assess-
ment or a germination-test-based approach. These approaches can be laborious and inaccurate. Recent advances in 
deep learning provide new tools to solve challenging computer vision tasks such as object detection, which can be 
used for detecting and counting plant seedlings in the field. The goal of this study was to develop a deep-learning-
based approach to count plant seedlings in the field.

Results:  Overall, the final detection model achieved F1 scores of 0.727 (at IOUall ) and 0.969 (at IOU0.5 ) on the 
SeedlingAll testing set in which images had large variations, indicating the efficacy of the Faster RCNN model with the 
Inception ResNet v2 feature extractor for seedling detection. Ablation experiments showed that training data com-
plexity substantially affected model generalizability, transfer learning efficiency, and detection performance improve-
ments due to increased training sample size. Generally, the seedling counts by the developed method were highly 
correlated ( R2 = 0.98) with that found through human field assessment for 75 test videos collected in multiple loca-
tions during multiple years, indicating the accuracy of the developed approach. Further experiments showed that the 
counting accuracy was largely affected by the detection accuracy: the developed approach provided good counting 
performance for unknown datasets as long as detection models were well generalized to those datasets.

Conclusion:  The developed deep-learning-based approach can accurately count plant seedlings in the field. Seed-
ling detection models trained in this study and the annotated images can be used by the research community and 
the cotton industry to further the development of solutions for seedling detection and counting.
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Introduction
Plant population density is defined as the number of 
plant stands per unit area, which is an important factor 
for agricultural production systems due to its substantial 
influence on crop yield potential and fruit quality [1–5]. 
Plant population density is particularly important for 
growers right after the germination stage, providing hard 
date from which to evaluate the necessity of replanting 
the field if the density is not adequate. Thus, it is crucial 

to calculate the plant population density when plants are 
in the seedling stage.

To estimate plant population density, a field assess-
ment involves manually counting the number of plant 
seedlings/stands in randomly selected subareas of a field 
and using the average value to represent the plant popu-
lation density. Quadrat and plot-less sampling methods 
are typically used for subarea sampling [6]. The quad-
rat sampling uses a quadrat delimiting an area in which 
seedlings/plant stands can be counted, whereas the plot-
less sampling defines a segment with a known length 
for seedling/stand counting. Both sampling methods 
require proper configuration (e.g., quadrat size, segment 
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length, and the number of sampling replications) for an 
optimal estimation accuracy. While subsampling-based 
approaches are straightforward, they are laborious (espe-
cially for large fields) and could be inaccurate if subsam-
pling is not appropriate.

To address these issues, several studies have been con-
ducted to investigate the use of color images to count 
plant seedlings in the field [7–9]. These studies relied 
on conventional image processing, which primarily uti-
lized color information to segment vegetative areas that 
were used for estimation of plant counts. While these 
approaches showed high counting accuracies (approxi-
mately 90%), they had two major disadvantages. First, 
color information was sensitive to ambient illumination 
and plant status. For instance, plants looked darker on 
cloudy days than sunny days, and plants just sprouting 
from the soil might have different color than well-estab-
lished seedlings. Second, counting models were site- and 
time-dependent. Typically, a calibration step was neces-
sary: a small portion of a field would be manually counted 
to establish a regression model between pixel counts (or 
the number of segmented areas) and actual plant counts, 
so the regression model could be applied to the rest of 
the images for automatic processing. A regression model 
established in one experimental site (growth stage) might 
not transfer to another site (growth stage), requiring 
model validation or re-calibration. In particular, breed-
ing programs and genetics studies involve a wide variety 
of genotypes with considerable variations in germina-
tion time, raising a particular concern about using these 
image-processing-based approaches for plant counting.

Seedling detection is an essential part of seedling 
counting. Recent breakthroughs in deep learning (e.g., 
deep convolutional neural networks, also known as, 
CNNs) have demonstrated strong performance for 
object detection [10]. In particular, faster-region-based 
CNN (Faster-RCNN) was developed as a CNN-based 
meta-architecture for object detection [11], which has 
been shown to provide state-of-the-art performance for 
various applications and competitions [10]. Researchers 
explored the use of Faster RCNN for in vivo fruit detec-
tion for peppers [12, 13], mangoes [14], apples [15, 16], 
almonds [17], and maize ears [18]. These studies reported 
promising detection accuracy (F1 score from 0.8 to 0.92) 
and thus per-image counting accuracy (relative counting 
errors from 2 to 15%). In addition, several of these studies 
further expanded the Faster-RCNN-based fruit detection 
and counting from a single image to consecutive image 
sequences.

The key challenge of counting in image sequences 
or videos is to preclude repeated counting of one fruit 
object. Three approaches were used to solve this chal-
lenge. The first approach reconstructed 3D point clouds 

of a crop row using 2D images by the structure from 
motion (SfM) technique, and fruit detections were pro-
jected from individual 2D images to the reconstructed 
global 3D space [15, 16]. As a single fruit object occu-
pied a unique 3D position, detections of one fruit object 
in different 2D images would highly overlap in the 3D 
space. Thus, redundant detections of one fruit object 
could be removed to avoid repeated counting. The sec-
ond approach used the position (from RTK GPS) and 
pose (from IMU devices) of image acquisition to esti-
mate the geometric correspondence between pixels in 
two consecutive images. With this approach, fruit detec-
tions in one image could be associated with detections 
in the next image, thus tracking individual detections 
through image sequences or videos for counting [14]. 
In the third approach, a tracking-via-detection strategy 
was developed to track and count fruit objects in image 
sequences [13, 16]. The key of the tracking-via-detection 
strategy is detection-tracker association (assign a detec-
tion to a tracker). In [13], the intersection over union 
(IOU) and boundary measure (the ratio of the intersec-
tion between a tracker and a detection to the area of that 
detection) metrics were used to quantify the closeness 
between a detection and a tracker. Thresholds of IOU 
and boundary measure were determined using a small 
set of image sequences. For a given pair of detection and 
tracker, if they had an IOU value and a boundary meas-
ure that exceeded the predetermined thresholds, the 
detection and tracker would be associated. In [16], opti-
cal flow was calculated to estimate object motion (center 
positions for trackers) between consecutive images. The 
estimated center positions for trackers would be com-
pared with center positions for detections. If the center-
to-center distance was the minimum, a detection and 
a tracker would be associated. Although all the three 
approaches provided fairly high counting accuracies 
(95.56% to 97.83% for [15], 98% for [14], and 95.9% for 
[13]), they had various limitations. The first approach was 
computationally expensive due to the SfM-based recon-
struction. In addition, certain environmental factors (e.g., 
wind) would result in failure of 3D reconstruction using 
the SfM. The second approach was less computationally 
expensive than the first one, but the use of positioning 
sensors (e.g., RTK GPS and IMU) substantially increased 
the cost of data acquisition systems, which could be 
problematic for small research projects/farms. The third 
approach was the least expensive in terms of computa-
tion and hardware investment, but the tracking strategy 
was not robust to different noises. For the method used 
in [13], the IOU and boundary measure thresholds were 
determined using only a small set of image sequences. 
If the testing image sequences and videos were acquired 
in slightly different conditions, the thresholds might 
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become invalid and result in degraded performance. For 
the optical flow method [16], the calculation of optical 
flow could be dramatically influenced by ambient illumi-
nation changes, resulting in inaccurate motion estima-
tion and tracking [19]. These issues could be addressed 
by using other tracking methods such as Kalman filter.

To the best of our knowledge, no study has reported 
the use of a CNN-based approach for seedling detection 
and counting. Based on the successes of fruit detection 
and counting, it is worth exploring the use of CNN-based 
approaches for seedling detection and counting. In par-
ticular, the combination of CNN-based detection mod-
els and sophisticated tracking framework would provide 
inexpensive but accurate counting solutions.

The overall goal of this study was to develop an approach 
based on CNN and Kalman filter to counting cotton seed-
lings in the field. Specific objectives were to (1) collect and 
annotate image datasets for detection model training and 
testing, (2) train Faster-RCNN models for seedling detec-
tion, (3) examine the key factors (training sample size, 
transfer learning efficiency, and generalizability) for detec-
tion model training, and (4) use the trained Faster-RCNN 
models and Kalman filter to track and count cotton seed-
lings in videos of individual plots or field segments.

Results
Detection performance on SeedlingAll dataset
Overall, the Faster RCNN model ( modelSAll ) trained 
using the SeedlingAll training set achieved an F1 score 
( 2×precision×recall

precision+recall
 ) of 0.727 (at IOUall ) and 0.969 (at IOU0.5 ) 

on the SeedlingAll testing set in which images had large 
variations. The modelSAll had even a better performance 
(F1 score of 0.998) for the seedling class, indicating the 
efficacy of the Faster RCNN model with an Inception 
ResNet v2 feature extractor for seedling detection. The 
modelSAll successfully addressed various challenges in the 
testing images (Fig. 1). The primary challenge in the test-
ing images originally collected in the TAMU2015 dataset 
was occlusion. Despite excessive overlap between seed-
ling objects, the modelSAll could detect all seedlings with 
corresponding bounding boxes that were tightly fitted to 
the seedlings (Fig. 1a, b). The key challenges in testing the 
originally collected images in the UGA2015 dataset were 
the background complexity and presence of dicotyledon-
ous weeds. The background was relatively simple (no 
weeds) in some images but could be complex (many 
weeds) in other images (compare Fig.  1c, d). Seedings 
were accurately detected by the modelSAll even under 
shaded conditions (the second topmost detection in 
Fig.  1d). However, weeds (especially small-sized weeds) 
were not correctly detected when the background was 
very complex (dashed rectangles in Fig. 1d). It should be 
noted that there was no misclassification between 

dicotyledonous weeds and cotton seedlings, both of 
which are similar in appearance (e.g., color and shape). 
The RPN network, however, was probably insufficient to 
provide proposals for regions of interest (ROIs) of small-
sized weeds. Nonetheless, the trained models would be 
acceptable as the primary goal of this study was to detect 
seedlings rather than weeds.

Ablation experiment results
Training sample size
Generally, model performance was improved with the 
increasing of training sample size, but the improve-
ments heavily depended on the evaluation metric and 
task difficulty (Fig. 2). IOUall is more strict than IOU0.5 , 
forcing a higher model accuracy for object localization. 
Compared with IOU0.5 , it was clearer to observe perfor-
mance improvements due to increased training sample 
size at IOUall . The model ( modelTAMU2015 ) trained on 
the TAMU2015 dataset reached the maximum F1 score 
after 500 and 1000 training images at IOU0.5 and IOUall , 
respectively (Fig. 2a). The model ( modelUGA2018 ) trained 
on the UGA2018 dataset showed a slightly increasing 
trend at IOUall (compare the curves at IOU0.5 and IOUall 
in Fig.  2c). In addition, the difficulties of seedling and 
weed detection were different in various images. Based 
on the results of the SeedlingAll dataset, seedling and 
weed detections were the most difficult in the images 
from the UGA2015 dataset, followed by the TAMU2015 
and UGA2018 datasets. When using the same evaluation 
metric, the increasing trend of model performance with 
higher number of images was evident for the UGA2015 
dataset but less obvious for the TAMU2015 and 
UGA2018 datasets. This finding held true for individual 
classes (Fig.  3). For the seedling class, datasets contain-
ing challenging situations (e.g., excessive occlusion in the 
TAMU2015 dataset and high similarities between classes 
in the UGA2015 dataset) required more than 300 train-
ing images to reach the best performance, whereas less-
challenging datasets could use only 100 training images 
for the best result. For the weed class, the precision-recall 
(PR) curves mostly expanded to be closer to the ideal PR 
curve (the top-right border) when increasing the train-
ing sample size. It was also noteworthy that the expan-
sion magnitudes were more substantial for the UGA2015 
dataset than the TAMU2015 dataset.

Transfer learning using different pretrained models
Transfer learning by model initialization using weights 
pretrained on a domain dataset showed varied efficien-
cies. These efficiency variations were dependent on eval-
uation metrics and datasets (Fig. 4). When using a strict 
evaluation metric, model initialization using weights 
pretrained on a domain dataset generally yielded better 
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performance than that using weights pretrained on a 
common dataset such as the common objects in context 
(COCO) dataset (overall performance at IOUall in Fig. 4). 
An exception was identified for the experiment on the 
TAMU2015 dataset: the overall F1 score from the model 

initialized using weights pretrained on the COCO data-
set was slightly higher than that on the U15U18 dataset 
(compare the overall performance at IOU0.5 and IOUall in 
Fig. 4c).

Fig. 1  Cotton plant seedlings and weeds detected in representative images of the SeedlingAll testing set by the Faster RCNN model that was trained 
using the SeedlingAll training set. a, b Are images originally collected in the TAMU2015 dataset, presenting challenges of high seedling occlusion; 
c, d in the UGA2015 dataset, presenting challenges of extreme illumination; and e, f in the UGA2018 dataset without critical challenges for object 
detection
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Model generalizability
The generalizability of trained Faster RCNN models was 
largely data dependent. The Faster RCNN model trained 

using the T15U15 dataset ( modelT15U15 ) provided com-
parable performance (1% difference) to the modelUGA2018 
for the UGA2018 testing set, indicating a strong model 

Fig. 2  Detection performance (F1 score) calculated using different number of training images for: a the TAMU2015 dataset, b the UGA2015 dataset, 
and c the UGA2018 dataset. When IOUall (a more strict metric) was used, increasing trends of model performance were clearly observed by using 
more training images

Fig. 3  Per-category precision-recall curves generated using different number of training images. a–c Are for seedling detection in the TAMU2015, 
UGA2015, and UGA2018 datasets, and d, e are for weed detection in the TAMU2015 and UGA2015 datasets. A perfect test would have a PR curve 
that passes through the upper right corner (i.e., 100% for both precision and recall)
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generalizability to new datasets (see results for the 
UGA2018 testing set in Table 1). On the contrary, Faster 
RCNN models trained using the U15U18 ( modelU15U18 ) 
and T15U18 ( modelT15U18 ) datasets showed a sub-
stantially decreased performance for the testing set of 
TAMU2015 (F1 score reduction of 36% and 30% at IOUall 
and IOU0.5 ) and UGA2015 (F1 score reduction of 41% 
and 49% at IOUall and IOU0.5 ) respectively. Although 
both the two models showed a performance decline for 
weed detection, the modelU15U18 showed an acceptable 
generalizability (F1 score reduction of 7%) for seedling 

detection, whereas the modelT15U18 had poor perfor-
mance of seedling detection (F1 score reduction of 26%) 
as well (Table 2). 

Counting accuracy
Overall, seedling counts that were calculated using the 
developed approach with the modelSAll model were 
highly correlated ( R2 = 0.98) with those by human field 
assessment (Fig. 5a). The slope of the regression equation 
was one, suggesting that seedling counts calculated by 
the developed approach can be used directly. For the 75 

Fig. 4  Boxplots of performance (F1 score) on the testing set for models initialized using different pretrained models. a Are results for the UGA2018 
dataset using models initialized by weights pretrained on the COCO and T15U15 datasets, respectively, b are results for the UGA2015 dataset using 
models initialized by weights pretrained on the COCO and T15U18 datasets, respectively, and c are results for the TAMU2015 dataset using models 
initialized by weights pretrained on the COCO and U15U18 datasets, respectively. Base indicates model initialization using weights pretrained on 
the COCO dataset, whereas DA indicates model initialization using weights pretrained on a domain dataset. For each of the TAMU2015, UGA2015, 
and UGA2018 datasets, a subset of 100 images were randomly selected from the training set to train a Faster RCNN model. A total of 10 models 
were obtained through 10 training repetitions for statistical comparisons between the models. Asterisks indicate statistical differences in model 
performance at the significance levels of 0.05 (*), 0.01 (**), and less than 0.001 (***)
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testing videos, 53 (70%) videos had an absolute counting 
error less than or equal to 1 seeding, and 15 (20%) vid-
eos with an absolute counting error greater than 1 had a 
relative counting error of less than 10% (Fig.  5b). Thus, 
a total of 90% of the testing videos showed acceptable 

counting accuracies, whereas the rest 10% of the testing 
videos showed large counting errors (larger than 15%). 
Nonetheless, the mean relative error for all the 75 videos 
was 7%, indicating the efficacy of the developed counting 
approach.

Table 1  Overall performance of the model generalizability

For the testing set in each of the UGA2018, UGA2015, and TAMU2015 datasets, two Faster RCNN models were trained using the training set from the same dataset and 
from the combination of the other two datasets, respectively. Performance comparison of the two models was used to evaluate the model generalizability

Training set Testing set mAP IOUall mAR100 IOUall F1 IOUall mAP IOU0.5 mAR100 IOU0.5 F1 IOU0.5

T15U15 training UGA2018 testing 0.763 0.808 0.785 0.981 1.000 0.991

UGA2018 training UGA2018 testing 0.778 0.818 0.798 0.983 0.992 0.987

T15U18 training UGA2015 testing 0.179 0.335 0.233 0.352 0.683 0.464

UGA2015 training UGA2015 testing 0.599 0.695 0.643 0.923 0.997 0.959

U15U18 training TAMU2015 testing 0.377 0.535 0.442 0.588 0.857 0.698

TAMU2015 training TAMU2015 testing 0.791 0.827 0.809 0.989 1.000 0.995

Table 2  Per-category performance of the model generalizability at the IOU0.5

Training set Testing set Plant AP Plant AR100 Plant F1 Weed AP Weed AR100 Weed F1

T15U15 training UGA2018 testing 0.981 1.000 0.991 NA NA NA

UGA2018 training UGA2018 testing 0.983 0.992 0.987 NA NA NA

T15U18 training UGA2015 testing 0.676 0.814 0.739 0.027 0.553 0.052

UGA2015 training UGA2015 testing 0.988 0.995 0.991 0.859 1.000 0.924

U15U18 training TAMU2015 testing 0.911 0.940 0.925 0.266 0.775 0.396

TAMU2015 training TAMU2015 testing 0.999 0.999 0.999 0.980 1.000 0.990

Fig. 5  Regression results between seedlings counts calculated by the developed approach and human field assessment. a Results obtained using 
the modelSAll detection model for all testing videos (n = 75, lifetime threshold of 7 was used for the TAMU2015 and UGA2018 testing videos and 15 
for the UGA2015 testing videos). b Counting differences between the proposed method and field assessment. A total of 53 videos (70%) had the 
counting differences less than 1 seedling, and 68 videos (90%) had the counting differences less than 5 seedlings
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Detection performance showed strong influences 
on the counting accuracy of the developed approach 
(Table  3). When detection models (e.g., modelT15U15 
and modelU15U18 ) were well generalized to seedling 
detection, the developed approach with such detection 
models provided similar counting accuracies for vid-
eos collected in separate data collection sessions (see 
results for TAMU2015 and UGA2018 testing videos in 
Table  3). It was noteworthy that R2 values decreased 
primarily due to the narrow range of seedling quanti-
ties. As a result, subtle counting errors could have con-
siderable influences on the R2 values. When detection 
models (e.g., modelT15U18 ) had poor generalizability 
to seedling detection, the counting performance of the 
developed approach with such models degraded dra-
matically (see results for UGA2015 testing videos in 
Table 3).

The reduction of counting accuracy was primarily 
due to tracking errors caused by inaccurate seedling 
detection (Fig.  6). In one of the TAMU2015 testing 
videos, the detection results were accurate in Frame 
60 and Frame 63 but not accurate in Frame 61 and 
Frame 62. Consequently, some trackers lost continuity 
in tracking between Frame 60 and the following video 
frames. When all seedlings were correctly detected in 
Frame 63 again, although some of the detected seed-
lings were the same in Frame 60 and Frame 63, they 
were assigned to new trackers due to the tracking 
discontinuity. As a consequence, the number of seed-
ling trackers would be higher than the actual number 
of seedlings from Frame 60 to Frame 63, which ulti-
mately led to inaccurate counts of seedlings in that 
video. Depending on the lifetime of new trackers (the 
number of frames new trackers could last), the seed-
ling count in a video could be higher or lower than the 
actual value. This would be a major error source for 
the developed approach.

Discussion
Learned lessons for training seedling detection models
Seedling detection results showed that the selected fea-
ture extractor (Inception ResNet v2) should be powerful 
enough to extract features for differentiation of classes 
with similar appearance (e.g., cotton seedlings and dicot-
yledonous weeds). Faster RCNN model, however, did 
not accurately detect small-sized weeds. In fact, detec-
tion of small-sized objects is a general challenging issue 
for region based neural networks, especially for datasets 
with a mixture of objects of other sizes [20]. Based on the 
results, a spatial resolution of 150 × 150 pixels or higher 
(in an image of 1920 × 1080 pixels) would be generally 
adequate to avoid potential issues due to small-sized 
objects. Although the used CNN meta-model has the 
potential for detecting cotton plants in a later stage, over-
laps between true leaves would cause significant occlu-
sions between plants, raising a great challenge for object 
detection. Thus, it suggests that seedling detection needs 
to be conducted in the cotyledon stage (usually 7–14 days 
after planting) for the best performance.

Ablation experiment results suggest that model detec-
tion performance would be maximized by using optimal 
training sample size and pre-training/training datasets. 
Generally, a large number of training samples would 
benefit the training of Faster RCNN models in terms of 
localization and classification. The bounding box regres-
sor of Faster RCNN models could be better trained with 
more training images, providing more accurate locali-
zation results (F1 score at IOUall ). Additionally, more 
training images could allow the learning of adequate 
feature representations to differentiate classes with a 
similar appearance, providing dramatic classification 
performance improvements (e.g., weed detection in 
UGA2015 dataset).

Transfer learning through weight initialization 
requires a careful consideration of a dataset used for 

Table 3  Regression results between seedling counts obtained by the proposed method and human field assessment

R
2 refers to adjusted R2

RMSE root mean squared error, MAE mean absolute error, MRE mean relative error

Detection model Testing videos Regression equation Video quantity R2 RMSE MAE MRE (%)

modelSAll All Y = X 75 0.98 1.6 1.5 7

modelSAll TAMU2015 Y = 0.96 X 25 0.85 3.3 3.4 11

modelSAll UGA2018 Y = X 25 0.99 0.2 0.5 6

modelSAll UGA2015 Y = 1.01 X 25 0.96 1.1 0.8 4

modelU15U18 TAMU2015 Y = 0.95X 25 0.80 3.9 3.4 11

modelU15T15 UGA2018 Y = 1.02X 25 0.68 0.8 0.6 7

modelT15U18 UGA2015 Y = 0.32X + 18.65 25 0.33 4.3 12.1 57
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pre-training. Mostly, datasets collected for the same 
domain problem are likely similar to each other, so 
weights pretrained from one dataset could be more 
beneficial for the model training process for another 

dataset. For instance, compared with weights pre-
trained on a common dataset, weights (especially for 
the bounding box regressor) pretrained on a seed-
ling dataset would be closer to the optimal values for 

Fig. 6  An example of seedling tracking errors due to inaccurate detection results. The detection model was modelSAll and the testing video was 
from TAMU2015 dataset. Detection results were inaccurate in Frame 61 and Frame 62, causing incorrect termination of existing trackers and 
creation of excessive trackers for some seedlings. These tracking errors eventually led to inaccurate counting results
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another seedling dataset, resulting in better localiza-
tion of seedlings. If two datasets for the same domain 
problem are divergent, transfer learning efficiency is 
likely to be declined. For instance, the TAMU2015 
contained monocotyledonous weeds, whereas the 
U15U18 contained dicotyledonous weeds. Due to a 
higher object diversity, weights (features) learned on 
the U15U18 dataset were insufficient to represent weed 
objects in the TAMU2015 dataset, resulting in a per-
formance reduction. In such cases, a common dataset 
(e.g., the COCO dataset) can be used for model pre-
training to increase the diversity of learned features and 
thus the capability of object representation. Training 
datasets have also demonstrated a considerable effect 
on the model generalizability. If a training dataset cov-
ers all possible object status (e.g., appearance variation 
and object occlusion), models trained on that dataset 
usually can be well generalized to new datasets for the 
same task. Otherwise, model generalizability would be 
limited. For instance, the T15U15 dataset was diverse 
to cover possible object status in the UGA2018 dataset, 
so modelT15U15 achieved a high accuracy of seedling 
and weed detection in UGA2018 testing images. Both 
modelT15U18 and modelU15U18 , however, showed a poor 
performance of weed detection for the UGA2015 and 
TAMU2015 datasets, respectively. This is because their 
training datasets lacked objects with specific status: the 
T15U18 dataset contained no dicotyledonous weed that 
existed in the UGA2015 dataset and the U15U18 data-
set contained no monocotyledonous weed that existed 
in the TAMU2015 dataset.

Training and deployment of deep learning models 
need the use of high performance computing (HPC) 
resources. It is crucial to introduce potential ways to 
access HPC, so researchers and growers (especially 
small research groups and farms) could benefit from 
deep learning techniques such as the one presented 
in this study. Currently, there are three major ways to 
access HPC resources. First, commercial HPC services 
are available by transnational companies such as Ama-
zon, Google, and Microsoft. An Amazon GPU node 
(e.g., p2.xlarge) costs approximately $15 for training/
tuning the presented model, which is an affordable 
solution for small research groups/growers. Second, 
some universities and research institutions also host 
HPC clusters that can be used by researchers with a 
reasonable price. Third, consumer-grade GPUs are 
typically $200 to $500, which are inexpensive as a long-
term investment. In addition, if processing speed is 
not a required factor (e.g., realtime decision-making), 
model deployment can use a reduced computing power 
(e.g., a regular computer), which dramatically lowers 
down the hardware cost.

Seedling counting
The developed approach is more efficient and effec-
tive than traditional seedling counting methods. High 
throughput plant phenotyping systems enable a fast and 
efficient data collection in the field. Based on the pre-
sented study, a 10.67-m plot can be imaged in approxi-
mately 20  s, and thus a typical experiment involving 
several hundred of plot can be scanned in 1 or 2 h with 
only one human operator, which dramatically reduces the 
labor and time required by traditional methods. On aver-
age, the developed approach takes about 3.5 min to pro-
cess a video of a 10.67-m plot at 30 FPS (equivalent to 0.4 
s/frame) using one consumer-grade GPU card (NVIDIA 
GTX 1080 Ti). Although the processing speed is mod-
erate, it can be further improved by using advanced 
computing resources (e.g., HPC clusters), optimized 
computing solutions, and simplified detection models 
[10].

The developed approach provides a similar accu-
racy (93%) of seedling counting to other CNN-based 
approaches for fruit counting [13–15], showing the effi-
cacy of using CNN-based approaches for seedling count-
ing. Compared with the approach based on conventional 
image processing for seedling counting [7], the developed 
approach shows two advantages. First, the counting accu-
racy was improved from 88 to 92%. Second, and more 
importantly, the developed approach shows great poten-
tial to be generic for cotton seedling detection. Experi-
ments showed trained seedling detection models, and the 
counting approach could be well generalized to unseen 
datasets, so they can potentially be used in similar appli-
cations by the cotton industry and research communities 
with little or no modification. To the best of our knowl-
edge, the SeedlingAll dataset is the largest annotated data-
set of cotton seedlings, and publicizing such a dataset 
would benefit both research communities and the cotton 
industry.

Limiting factors
While showing certain advantages, the developed 
approach has two major limiting factors. First, detec-
tion models considerably influence the counting accu-
racy of the developed approach. It is not a trivial task to 
train an accurate and robust detection model in many 
applications. Three important factors have been exam-
ined in the present study, including the training sample 
size, transfer learning using different pretrained mod-
els, and model generalizability. Experimental results 
showed that all three factors were somehow data depend-
ent. On one hand, if agronomic practices (e.g., appli-
cation of pre-emergent herbicides) are implemented 
in a future project, seedling detection would be fairly 
simple due to few object categories in videos/images. 
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Thus, seedling detection can be solved using either the 
modelSAll directly, or using a new detection model that 
is initialized with the modelSAll and trained on a small 
number of annotated images (100 to 300 images based 
on the present study) from the newly collected dataset. 
In particular, for a specific experimental site or farm, it is 
highly recommended to be consistent in data collection 
conditions (e.g., cameras for image acquisition, camera 
configuration, and illumination conditions) to enhance 
the similarity between datasets collected over time and 
thus counting accuracies for long-term uses. If data in 
a future project are more complex (e.g., more frequent 
occlusions, more extreme illumination conditions, and 
more types of vegetation) than any of the datasets in this 
study, it is necessary to label a fairly large amount of data 
to ensure the possibility of achieving the best detection 
performance. If so, the value of trained models and anno-
tated data in the present study may be relatively reduced 
in future studies.

Secondly, a conventional Kalman-filter-based track-
ing algorithm is not adequate to solve issues caused by 
inaccurate detection of seedlings. When a cotton seed-
ling cannot be correctly detected in consecutive video 
frames, the current tracking algorithm is likely to termi-
nate the seedling tracker in the frame where that seed-
ling is mis-detected, and assign a new tracker in the 
next frame where that seedling is re-detected. Thus, that 
seedling could be counted repeatedly in a video, result-
ing in counting errors. This occurs primarily because 
the current strategy of detection/tracker assignment is 
based on the IOU metric. No detection means no inter-
section with any existing trackers. There are two ways 
to solve this issue. First, a new strategy can be used for 
tracker termination. If no detection can be assigned to 
a tracker, that tracker can be kept for extended frames 
(e.g., 3 video frames), which can address the tracking dis-
continuity due to inaccurate detection results to some 
extent. In the extended frames, the dynamic model for 
that tracker is updated using the information obtained in 
the last frame where that tracker has an associated detec-
tion, reducing the model accuracy. Thus, this strategy 
requires an additional checking procedure that ensures 
the correctness of detection and tracker association. 
Feature-based approaches are preferred to maximize 
the checking accuracy. Second, tracking information can 
be used to improve detection accuracy. The developed 
approach solely relies on the detection procedure to pro-
vide “ground truth measurements” for trackers. Thus, 
if the detection procedure is not accurate, the tracking 
procedure cannot be accurate. To address this issue, the 
tracking information needs to be used for the detection 
as well. For instance, the RPN of Faster RCNN could pro-
vide inaccurate region proposals (e.g., no region proposal 

around an existing tracker), leading to misdetection of 
seedlings and therefore inaccurate tracking. In fact, the 
tracking procedure predicts bounding boxes of all exist-
ing trackers in the next frame. These predicted bound-
ing boxes can be used as region proposals for detection 
models (e.g., a Faster RCNN model) or be evaluated by 
a separately trained CNN (e.g., a ResNet model) that 
determines the presence of plants (classified as either 
background or plants). With these efforts, it is expected 
to reduce the possibility of missing an existing tracker in 
the next frame and ultimately improve the tracking and 
counting accuracy. This detection-tracking continuum 
may violate some assumptions of the Kalman filter in a 
strict consideration. For instance, Kalman filter assumes 
that sensor measurement is independent of the dynamic 
model. To solve these potential issues, it is necessary to 
use other filtering approaches such as the particle filter. 
These solutions need to be further explored in future 
studies.

Conclusions
The developed approach based on deep CNNs can accu-
rately count germinated cotton seedling in the field. 
Experimental results showed that the approach general-
ized well to unseen datasets, indicating the great poten-
tial of applying the approach for other plant or plant 
organ detection and tracking. Trained detection models 
and the annotated images can be reused by the research 
communities and the cotton industry. Future studies will 
be focused on the improvement of computation effi-
ciency for real time online processing.

Methods
Data collection and preparation
Videos were collected in the cotton germination stage at 
different locations over multiple years (Table  4). Video 
collection could be done by a wide range of imaging sys-
tems including handheld cameras, moving cart-based 
systems, and tractor-based systems, which reflects the 
flexibility of data acquisition for the methodology devel-
oped in this study. Different plot arrangements were 
used in the experiment fields (Fig.  7). Generally, the 
camera was placed/held at approximately 0.5 m above 
the ground, minimizing seedling size differences among 
videos. The collected videos were split into detection 
and counting sets. Videos in the detection set were used 
to extract video frames at a frequency of 6 frames per 
second (FPS), forming three image datasets that were 
used for plant seedling detection. For convenience, the 
three image datasets will be referred to as TAMU2015, 
UGA2015, and UGA2018 hereafter. Videos in the count-
ing set were segregated into 75 video clips (25 clips per 
dataset) for evaluating the developed counting algorithm. 
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Each video clip represented an approximately 3-m long 
segment in the videos collected in the state of Texas or a 
single plot in the videos collected in the state of Georgia.

Three image datasets were preprocessed to reduce the 
image variability (Fig. 8). A contrast limited adaptive his-
togram equalization (CLAHE) algorithm was applied to 
equalize the value channel of images in the HSV color 
space, which enhanced the image contrast and reduced 
the image variation due to ambient illumination changes. 
The preprocessed images were manually annotated with 
bounding boxes for objects of two classes: plant seed-
lings and weeds. Monocotyledon weed was the only weed 
type observed and labeled in the TAMU2015 dataset, 

whereas dicotyledons were the primary weed type in the 
UGA2015 dataset. Very small-sized weed objects (less 
than 30 × 30 pixels) were not labeled. As pre-emergent 
herbicides were applied, there was no weed identified in 
the UGA2018 dataset. After manual annotation, the three 
datasets were partitioned into training, validation, and 
testing sets with a ratio of 80%/10%/10% (Table 5). Subse-
quently, four comprehensive datasets were generated by 
combining the three datasets (Table 6). As the T15U15, 
T15U18, and U15U18 datasets were only used for model 
training and validation, the validation and testing sets of 
the original datasets (e.g., TAMU2015, UGA2015, and 
UGA2018) were merged into a single validation set. The 

Table 4  Data collection summary

Data collection Texas A&M University University of Georgia University of Georgia

Location Corpus Christi, TX, USA Watkinsville, GA, USA Watkinsville, GA, USA

Plot length 10.67 m 3.05 m 1.5 m

Cultivars 35 commercial cultivars widely grown in 
Texas

Genotypes in UGA breeding pro-
grams

4 commercial cultivars 
widely grown in 
Georgia

Seed spacing 0.08 m/seed (average) 0.1 m/seed (average) 0.15 m/seed

Date 12 April 2015
11 days after planting, DAP

15 June 2015
11 DAP

13 June 2018
7 DAP

Weather Sunny Cloudy Sunny

Camera Samsung Galaxy Note3 Panasonic DMC-G6 Fujifilm X-A10

Video configuration 1920 × 1080 @ 30 FPS 1920 × 1080 @ 60 FPS 1920 × 1080 @ 30 FPS

ISO/HDR Auto/auto 160/Off Auto/not support

Average moving speed 0.6 m/s 0.75 m/s 0.6 m/s

Number of collected videos (detection/
counting)

3 (2/1) 6 (4/2) 4 (2/2)

Number of plots per video 7 16 19

Fig. 7  Plot arrangements of different experiment fields used in the presented study. Videos were collected using different cameras in these fields to 
provide datasets for successive processing
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Fig. 8  Example images in the TAMU2015, UGA2015, and UGA2018 datasets. For seedling detection, the TAMU2015 dataset shows challenges of 
high object occlusion and existence of monocotyledonous weed and the UGA2015 dataset shows extreme illumination condition and existence of 
dicotyledonous weed. On the contrary, the UGA2018 dataset demonstrates a relatively simple and ideal situation for seedling detection
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SeedlingAll dataset was generated by combining all three 
datasets with the original partitioning.

Faster RCNN for seedling detection
Model architecture, training, and evaluation
The Faster RCNN meta architecture was used due to its 
success in many object detection applications [10]. The 
architecture contains a feature extractor, a region proposal 
network (RPN), and a classification and regressor mod-
ule. The feature extractor is usually a deep CNN network, 
which extracts informative feature representations from 
the raw input images in a hierarchical fashion. The RPN 
uses the extracted features to generate potential regions of 
interest (ROIs), and the classification and regressor mod-
ule uses the features in each ROI to identify the ROI class 
and refine the coordinates of ROI bounding box. In this 
study, the Inception ResNet v2 network [21] was used as 
the feature extractor due to its great potential of differen-
tiating classes with similar appearances and shapes (e.g., 
dicotyledonous weed and cotton seedlings).

Transfer learning was used to improve the training effi-
ciency and effectiveness. In the present study, the Faster 
RCNN model was initialized by weights pretrained on the 
common objects in contexts (COCO) dataset, and fine-
tuned on the SeedlingAll training set. Mini-batch stochastic 

gradient descent (SGD) and the Adam optimizer were used 
for model training. While training the model, data aug-
mentation was performed to increase the diversity of train-
ing images, including horizontal and vertical image flip and 
random changes of image saturation, brightness, and con-
trast. The Faster RCNN model and training programs were 
implemented using Tensorflow. Training processes were 
performed on two computing nodes hosted by the Geor-
gia Advanced Computing Resource Center (GACRC), with 
each being configured with 14 CPU cores (2.8 GHz per 
core), 120 GB CPU memory, and a GPU card (Tesla V100 
16 GB, NVIDIA Corporation, Santa Clara, CA, USA) under 
the operating system of CentOS 7.5. Based on preliminary 
experiments, the model was trained for a total of 50,000 iter-
ations (equivalent to 22 epochs) using an initial learning rate 
of 0.0001, a dropout rate of 0.5 for the RPN and classification 
and regressor modules, and weight decay of 0.001. Model 
checkpoints were saved after every 5000 training iterations, 
and a total of 10 checkpoints were evaluated on the vali-
dation set to select the best model for testing and seedling 
counting. For the sake of brevity, the training procedure and 
configuration was the base training configuration.

Mean average precision (mAP), mean average recall of 
the top 100 detections (mAR100), and an F1 score were 
calculated at IOU0.5 and IOUall (from IOU0.5 to IOU0.95 

Table 5  Summary of data annotation and partitioning for the TAMU2015, UGA2015, and UGA2018 datasets

Dataset TAMU2015 UGA2015 UGA2018

Total number of images 2204 1895 1511

Number of training images 1801 1603 1253

Number of validation images 202 146 129

Number of testing images 201 146 129

Total number of annotations (plant seedling/weed) 21915 (21133/782) 7802 (6849/953) 5880 (5880/0)

Number of training annotations (plant seedling/weed) 17939 (17290/649) 6524 (5743/781) 4862 (4862/0)

Number of validation annotations (plant seedling/weed) 1964 (1911/53) 643 (553/90) 540 (540/0)

Number of testing annotations (plant seedling/weed) 2012 (1932/80) 635 (553/82) 478 (478/0)

Number of videos for counting test 25 25 25

Table 6  Summary of data annotation and partitioning for the combined datasets

Dataset T15U15 T15U18 U15U18 SeedlingAll

Total number of images 4099 3715 3406 5610

Number of training images 3404 3054 2856 4657

Number of validation images 695 661 550 477

Number of testing images N/A N/A N/A 476

Total number of annotations (plant seedling/weed) 29739 (27997/1742) 27809 (27025/794) 13696 (12736/960) 35597 (33862/1735)

Number of training annotations (plant seedling/weed) 24466 (23035/1431) 22805 (22154/661) 11388 (10606/782) 29325 (27895/1430)

Number of validation annotations (plant seedling/weed) 5273 (4962/311) 5004 (4871/133) 2308 (2130/178) 3147 (3004/143)

Number of testing annotations (plant seedling/weed) N/A N/A N/A 3125 (2963/162)
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with an interval of 0.05) and used as metrics to evaluate 
the overall performance of detection models. The use of 
metrics at IOUall was to more strictly evaluate the locali-
zation accuracy of detection models. In addition, average 
precision (AP), average recall of the top 100 detections 
(AR100), and an F1 score at IOU0.5 were calculated for 
the seedling and weed classes, so per-category perfor-
mance of detection could be analyzed. These evaluation 
metrics were used for ablation experiments as well.

Ablation experiments
Many practices could be used to optimize the training 
of CNNs and CNN meta-models. In this study, three 
aspects were investigated to provide an optimal configu-
ration to train Faster RCNN models for seedling detec-
tion, including training sample size, transfer learning with 
different pretrained models, and model generalizability.

Training sample size While model performance ben-
efits from a large amount of training samples, it is usu-
ally laborious to obtain a large training set for domain 
applications such as seedling detection. Therefore, it is 
important to investigate improvements of model perfor-
mance due to increased training sample sizes. For each 
of the TAMU2015, UGA2015, and UGA2018 datasets, 
a total of 7 Faster RCNN models were trained using dif-
ferent training sample sizes, including 100, 200, 300, 500, 
700, and 1000 randomly selected training images and all 
training images. Model training was conducted using the 
base training configuration, with the reduction of train-
ing iterations from 50,000 to 35,000 (based on prelimi-
nary experiments). For each training sample size, the best 
model checkpoint was selected based on validation per-
formance and was used to obtain testing performance.

Transfer learning using different pretrained models In 
the present study, transfer learning was implemented 
through model initialization using pretrained weights. 
Thus, pretrained models may have considerable impact 
on the transfer learning efficiency. Model initialization 
using weights pretrained on large common datasets (e.g., 
ImageNet and COCO) would improve the model train-
ing for domain applications, especially for those with a 
small number of training images. However, improvements 
could be degraded when domain data are extremely differ-
ent from the common datasets. Two model initialization 
methods were used and compared to examine the trans-
fer learning efficiency using different pretrained models: 
(1) model initialization using weights pretrained on the 
COCO dataset and (2) model initialization using weights 
pretrained on a domain dataset that is different from a 
target dataset. For example, if the UGA2018 dataset was 
a target dataset, Faster RCNN models would be initialized 
using weights pretrained on the COCO and T15U15 data-
sets, respectively. Subsequently, the two initialized models 

were trained on a subset of 100 images that were ran-
domly selected from the UGA2018 training set. The base 
training configuration was used for model training and 
validation, with the reduction of training iterations from 
50,000 to 5000 (based on preliminary experiments). Per-
formance on the UGA2018 testing set was obtained using 
the best checkpoint for each of the two models. This pro-
cess was repeated 10 times, so a total of 10 testing results 
were calculated for each initialization method for a given 
target dataset, enabling statistical comparisons between 
the two methods. The TAMU2015 and UGA2015 were 
used as target datasets as well.

Model generalizability The model generalizability was 
also a key factor for training deep neural networks due 
to the high cost of labeling a large amount of images for 
domain applications. To evaluate model generalizability, 
detection performance on a target dataset was compared 
between models trained using datasets acquired in the 
same and different data collection sessions. For instance, 
if the TAMU2015 testing set was a target dataset, detec-
tion performance of a Faster RCNN model trained on the 
TAMU2015 training set would be compared with that 
trained on the U15U18 dataset. The base training config-
uration was used for model training and validation.

DeepSeedling framework for seedling counting
With an optimal configuration, a Faster RCNN model 
was obtained for seedling detection in static images. 
DeepSeedling framework was developed to integrate the 
trained Faster RCNN model for cotton seedling detection 
and counting in videos (Fig. 9). For a given video of cot-
ton seedlings, video frames were extracted at the video 
frame rate and enhanced using the CLAHE algorithm. 
The enhanced images were fed into a Faster RCNN model 
to detect cotton seedlings. The detected seedlings were 
tracked in all video frames to count the number of seed-
lings in the given video. The key concept of the frame-
work was to use computer vision techniques to track 
seedlings detected in video frames, avoiding repeated 
counting of the same seedling object.

Seedling counting by tracking
The total number of detected seedlings from all frames 
of a video was considerably larger than the actual num-
ber of seedlings in that video, because one cotton seed-
ling could be repeatedly detected in consecutive video 
frames, resulting in recurrent counts. To address this 
issue, detected seedlings were tracked in a video, so 
each seedling would be assigned with a single tracker 
and thus counted only once.

In the present study, seedling tracking was essentially 
to associate multiple detections (bounding boxes) of 
the same seedling over consecutive frames in a video. 
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The state of a seedling tracker ( ttt ) included the detec-
tion and moving speed of a seedling in a video, and was 
formulated using Eq. 1.

where u, v, s, r were the horizontal and vertical center (in 
pixels), area (in pixels), and aspect ratio of a bounding 
box. u̇, v̇, ṡ were the corresponding first-order derivatives 
with respect to time (in the unit of video frames).

The Kalman filter [22] was used to track detected 
seedlings in consecutive video frames (object track-
ing and counting in Fig.  9). The seedling tracking was 
treated as a discrete-time filtering problem, and it was 
solved by two steps [23]. The first step was prediction 
process (also known as time update) in which states 
of seedling trackers in the current frame were used to 
predict their states in the next frame using the dynamic 
model of Kalman filter. The second step was update 
process (also known as measurement update) in which 
observations (seedling detections) in the next frame 
were associated with the seedling trackers to update the 
tracker states and the dynamic model of Kalman filter. 
The two steps were performed alternatively over frames 
to track seedlings in a video.

(1)ttt = [u, v, s, r, u̇, v̇, ṡ]T

In the first frame ( i = 1 ), seedling trackers ( T1 ) were ini-
tialized using the seedling detections identified by a Faster 
RCNN model, with a value of zero for u̇, v̇, ṡ . Starting from 
the second frame ( i ≥ 2 ), tracker states ( ttt ) and the state 
covariance matrix ( PPP ) in the ith frame were estimated using 
the information of seedling trackers in the i − 1th frame by 
the prediction process (Eqs. 2 and 3).
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Fig. 9  Flowchart of the deep convolutional network based approach for cotton seedling detection and counting. After preprocessing, video frames 
are fed into a trained Faster RCNN model for seedling detection. Detected seedlings are associated using a Kalman filter-based video tracking 
algorithm, so the same plant object will be tracked through video frames and not counted repeatedly
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i − 1th frame, and FFF  was the matrix of state transition. 
Pi|i−1Pi|i−1Pi|i−1 was the a priori state covariance matrix for the 
ith frame, and Pi−1|i−1Pi−1|i−1Pi−1|i−1 was the a posteriori state covari-
ance matrix for the i − 1th frame. QQQ was the process noise 
covariance matrix and determined arbitrarily in this 
study [23].

In the ith frame, the Kalman filter was updated by 
the update process using seedling trackers in the i − 1th 
frame ( Ti−1 ) and seedling detections in the current frame 
( Di ). As detections were the ground truth measurements 
for existing trackers, it was necessary to associate detec-
tions and trackers for updating the Kalman filter. The 
cost of assigning a new detection ( djdjdj ∈ Di ) to an existing 
tracker ( tktktk ∈ Ti−1 ) was the negative IOU value between 
the detection ( djdjdj ) and the tracker’s predicted detection 
( ̂ti|i−1

k
t̂
i|i−1

kt̂
i|i−1

k  ). The assignment task was optimally solved using 
the Hungarian algorithm [24] that minimized the assign-
ment cost under a constraint of the minimum IOU value 
of 0.1 (Eq. 4).

where Di was the set of seedling detections in the ith 
frame and Ti−1 was the set of trackers in the i − 1th 
frame. N (·) was the function counting the number of ele-
ments in a set. djdjdj was the state of the jth seedling detec-
tion in Di and t̂ i|i−1

k
t̂
i|i−1

kt̂
i|i−1

k  was the a priori estimated state of 
the kth tracker ( tktktk ) in Ti−1 . c(djdjdj , t̂
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k ) was the cost for 
assigning djdjdj to t̂ i|i−1
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k  (i.e., the negative IOU value between 
the bounding boxes of djdjdj and t̂ i|i−1
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k  ), and aj,k indicated 
the assignment flag, with one for assigning djdjdj to t̂ i|i−1

k
t̂
i|i−1

kt̂
i|i−1

k  . 
It should be noted that one detection could be only 
assigned to one tracker or otherwise unassigned.

After the detection-tracker association, the detec-
tions ( Di ) and trackers ( Ti−1 ) were categorized into three 
groups: trackers associated with new detection, unas-
signed detections, and unassociated trackers. Trackers 
associated with new detection were used for the update 
process that calculated the a posteriori state covariance 
matrix in the ith frame ( Pi|iPi|iPi|i ) using Eqs. 5–7 and their a 
posteriori states of the trackers using Eqs. 8 and 9.
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where SiSiSi was the innovation covariance matrix of the 
Kalman filter in the ith frame. HHH was the measurement 
matrix that mapped a tracker state to a measurement 
(detection) state. RRR was the measurement error covari-
ance matrix and determined arbitrarily in this study. KiKiKi 
and III were the optimal Kalman gain for the ith frame and 
identity matrix, respectively. yiyiyi was the innovation (also 
known as measurement residual) between the a priori 
estimated state of a tracker ( ̂ti|i−1

associated
t̂
i|i−1

associatedt̂
i|i−1

associated ) and the state of 

that tracker’s associated detection ( dtdtdt ) in the ith frame, 
and t̂ i|iassociatedt̂

i|i
associatedt̂
i|i
associated was the a posteriori estimated state of that 

tracker.
Unassigned detections (zeros for u̇, v̇, ṡ ) were initialized 

as new trackers and added into the existing tracker set 
( Ti−1 ). Unassociated trackers from Ti−1 were removed, 
forming the new tracker set for the ith frame ( Ti ). All 
frames were processed sequentially using the predic-
tion and update processes of the Kalman filter, which 
provided a list of trackers with their lifetime (number of 
video frames in which trackers existed).

In theory, the number of trackers would be the num-
ber of seedlings in a video as one tracker exactly corre-
sponded to one seedling. However, in practice, seedling 
detection models could occasionally provide inaccu-
rate detection results, resulting in potential initializa-
tion of noisy trackers. Thus, a lifetime filter was used to 
select valid trackers (trackers with a lifetime longer than 
a threshold), and the number of valid trackers was used 

(6)KiKiKi = Pi|i−1Pi|i−1Pi|i−1H
THTHTS−1

iS
−1
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i
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T
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i|i−1
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as the number of seedlings in a video. In the present 
study, the lifetime threshold was arbitrarily set as a quar-
ter of video frame rate, which was 7 for TAMU2015 and 
UGA2018 videos and 15 for the UGA2015 testing videos.

Counting accuracy evaluation
The developed approach with modelSAll was used to count 
the number of seedlings in the 75 testing videos collected 
in multiple locations and years. Simple linear regression 
tests were performed between the video-derived counts 
and human field assessment, and the fitted slope, adjusted 
coefficient of determination ( R2 ), and root mean squared 
error (RMSE) were used as the evaluation metrics. Mean 
absolute error (MAE) and mean relative error (MRE) 
were also calculated as additional metrics for counting 
accuracy evaluation. In addition, the developed approach 
with modelU15U18 , modelU15T15 , and modelT15U18 was 
tested using 25 testing videos of TAMU2015, UGA2018, 
and UGA2015, respectively. The same metrics were cal-
culated to compare with those calculated using modelSAll , 
which provided an evaluation of the counting accuracy of 
unknown datasets.
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