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Abstract 

Background:  The quality of forage plants is a crucial component of animal performance and a limiting factor in pas-
ture based production systems. Key forage attributes that may require improvement include the sugar, lipid, protein 
and energy contents of the vegetative parts of these plants. The aim of this study was to evaluate the potential capac-
ity of hyperspectral imaging (HSI) for non-invasive assessment of forage chemical composition. Hyperspectral image 
data within the visible near-infrared range into the extended near-infrared covering 550–1700 nm wavelengths were 
obtained from 185 accessions of ryegrass (Lolium perenne), which were also analysed for 13 forage quality attributes.

Results:  Medium to high predictive power was observed for the HSI models of total sugars (R2 validation of 0.58), 
high molecular weight sugars (R2 validation of 0.63), %Ash (R2 validation of 0.50) and %Nitrogen (R2 validation of 0.70). 
Significant HSI models with low R2 validation of 0.1–0.5 were also obtained for low molecular weight sugars, NDF (%), 
ADF (%), DOMD (% DM), ME (MJ/kg DM), DM (%), Ca (mg/g) and OM (%). We also observed significant differences in 
the chemical composition between the pseudostems and leaves of the plants for each accession. The power of HSI 
for prediction of these differences within plants was also demonstrated.

Conclusion:  This study paves the way for the HSI technology to be used for in-field estimation of forage composi-
tion attributes in perennial ryegrass. This will allow more rapid genetic-based selection and breeding for a trait that is 
normally expensive to measure providing a cheaper, non-destructive and high throughput screening tool.
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Background
Genomic selection can be effectively used to increase for-
age and animal productivity by selecting traits of interest 
in forages [1]. Among these traits, forage composition is 
one of the hardest and most costly traits to measure as it 
requires harvest and manual separation. Another limita-
tion to the measurement of this trait is that the standard 
method of measuring forage composition requires col-
lection and destruction of the plant material. Therefore, 
non-invasive technologies from which models can be 
developed to predict the composition of forage would be 
highly valuable [2]. A body of research has demonstrated 
the potential of non-invasive near-infrared spectroscopy 
(NIRS) based methods (dried and ground samples) to 

estimate the components of forage [3–6]. Other non-
invasive technologies including Hyperspectral Imaging 
(HSI) systems [7–10] have been used to develop predic-
tive models for forage quality and quantity. If accurate 
prediction models can be developed, such technologies 
will offer the potential for faster and higher throughput 
prediction of forage quality attributes and hence stream-
lining more rapid genomic selection for quality traits.

Near-infrared spectroscopy (NIRS) is based on utiliz-
ing the interaction of electromagnetic radiation with 
matter to detect the characteristic chemical signatures 
of target materials [2]. NIRS instruments based on single 
point measurement typically require a multitude of rep-
licate scans of the target object for improved prediction 
of attributes. NIRS instruments can be used to predict 
the attributes of heterogeneous materials provided a suf-
ficient number of replicate scans are obtained to account 
for this heterogeneity [11] although this adds extra time 
and cost to applications. NIRS has been used in perennial 
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ryegrass to estimate leaf relative water content [12]. HSI 
instruments, however, are capable of capturing both 
spectral and spatial information [2]. These features make 
the technology suitable for automated, rapid and large-
scale screening of forage. HSI systems have been used at 
plot, paddock, farm and catchment scales to determine 
type of forage as well as the quality of forage [7–10, 13, 
14], although there is less information at the plant scale, 
which is the scale of interest for plant breeders. The 
deployment of the HSI technology, like any other tech-
nology, for forage analysis is dependent on the time and 
spatial scales of interest. Furthermore, because model 
calibrations are dependent on the spatial scale of inter-
est as well as the lighting conditions, care must be taken 
when transferring calibration equations between spatial 
scales. This is specifically true when the forage is hetero-
geneous, and lighting and forage geometry only allow for 
observation of a subset of the sward in which case, a cali-
bration transfer technique must be employed.

The targeted selection of new forages for optimal ani-
mal production and environmental outcomes in pastoral-
based systems requires detailed information on forage 
composition. Information on the temporal (diurnal and 
seasonal) and spatial (between plants in the field as well 
as within the sward) variation in the composition of for-
age is also required to assess the performance of new for-
ages and their interaction with the farm system. Forage 
quality traits of interest include the contents of total sug-
ars, high molecular weight (HMW) sugars, low molecu-
lar weight (LMW) sugars, ash, calcium (Ca) and nitrogen 
[1, 15]. In addition, more complex and calculated com-
position traits such as neutral detergent fibre (NDF), acid 
detergent fibre (ADF), digestible organic matter in dry 
matter (DOMD), metabolisable energy (ME), and organic 
matter (OM) are the gold standard traits in forages [1, 
15]. The ME content of forage plays the central role in 
animal growth, maintenance and production. It also pro-
vides a measure of production potential, although pro-
duction is dependent on the other components of the 
forage as well [15]. NDF is an indication of the digestibil-
ity of cellulose, hemicellulose and lignin which comprise 
the cell wall components of the plant structure. ADF is 
a measure of the digestibility of the cellulose and lignin 
components only. The ash in forage consists of mineral 
elements such as sulphates, chlorides, and phosphates, 
which provide no energetic value to the animal. DOMD 
represents the organic matter in dry matter (DM), which 
is residual dry weight of the forage after the removal 
of moisture. The water soluble carbohydrate (WSC) 
includes mono- and di-saccharides, oligosaccharides and 
fructans (LMW and HMW sugars). Water soluble carbo-
hydrates are the most digestible components of ryegrass 
and play an important role in the complex process of 

ruminant digestion [16]. Water soluble carbohydrates 
also provide a primary substrate for ruminal microbi-
ota to breakdown of plant protein, which then becomes 
available for animal growth and maintenance. High WSC 
forage also potentially increases milk production of dairy 
cows while reducing the excretion of urinary nitrogen. 
The latter is a significant environmental problem in 
pastoral-based agricultural systems [16]. The concentra-
tion of the soluble sugars within ryegrass also exhibits a 
diurnal pattern that is seasonally dependent on the time 
course of photosynthesis [17–20]. Reducing the nitrogen 
content of forage also provides another strategy to reduce 
the nitrogen intake of the animal and therefore reduce 
urinary nitrogen levels and nitrogen losses from pasture 
[21–23].

The purpose of this study is to develop and test HSI 
models to predict the chemical composition of differ-
ent genotypes of perennial ryegrass. Another goal is to 
examine the differences in the chemical composition of 
the leaves and pseudostems of the plants. The role of dif-
ferent wavelengths in the detection of different forage 
quality traits was investigated. Also, the likely predic-
tive power of different wave ranges of very near-infrared 
(VNIR) and extended NIR was explored. An examination 
of the utility of a range of chemometric methods to pre-
dict the chemical composition of ryegrass forage was also 
conducted.

Results
Raw HSI images of forage blades and pseudostems are 
shown in Fig.  1a, b respectively. The forage heat map 
at 1080  nm is shown in Fig.  1c for the blades image in 
Fig. 1a. The region of interest (ROI) for the blades image 
in Fig.  1a is shown in Fig.  1d. The distribution in mean 
forage reflectance spectra in the ROI across all 37 gen-
otypes is shown in Fig. 2. There is significant variability 
between genotypes in the mean forage reflectance spec-
tra in the ROI for blades samples (P < 0.001). Reflectance 
minima are at 1000 nm, 1200 nm and 1450 nm and are 
consistent with water absorbance bands and forage 
reflectance spectra obtained from dried and milled sam-
ples [3].

Prediction models were calibrated and validated using 
the hyperspectral images and the wet chemistry data 
(partial least squares regression (PLSR) models). Com-
parisons of the best candidate calibration models for the 
BL + PS (Fig. 3) and BL datasets are described in Table 1) 
where model performance was similar for each dataset. 
The performance of the model for the prediction of total 
sugars in the BL + PS dataset is shown in Fig. 3a (R2 vali-
dation = 0.58, n = 66, LV = 12, RMSE = 34.4 mg/g). Aver-
age-high model performance was also observed for the 
prediction of HMW sugars for the BL + PS dataset (R2 
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validation = 0.63, n = 66, LV = 12, RMSE = 21.6  mg/g). 
The model performance for % Nitrogen for the BL + PS 
dataset is shown in Fig.  3b (R2 = 0.70, n = 64, LV = 20, 
RMSE = 0.35%). HSI models (R2 validation of 0.1–0.5) are 
also obtained for Ash (%), NDF (%), ADF (%), DOMD (% 
DM), ME (MJ/kg DM), DM (%), Ca (mg/g) and OM (%).

We also examined the ability of a variety of multivariate 
methods to predict the forage attributes. Our comparison 
of the different methods for nitrogen prediction on the 
BL + PS dataset is summarized in Table  2. Partial least 
squares regression methods provided the best predic-
tions on the validation dataset. Gaussian process regres-
sion and RF methods require larger dataset for training 

[24] and did not perform as well as PLSR. Support vec-
tor machine provided reduced performance compared to 
PLSR, and would also be expected to improve in perfor-
mance relative to PLSR with a larger dataset. The various 
multiple linear regression models provided validation R2 
of around 0.6, although the performance of these models 
would likely decrease on an independent dataset as they 
less effectively deal with multi-collinear data compared 
to PLSR based methods.

We found that wavelengths in the range 900–1700 nm 
provided a much better prediction of total sugars than 
wavelengths in the 550–900 nm wavelength range with a 
calibration R2 of 0.53 (900–1700  nm) compared to 0.18 

Fig. 1  a Raw HSI image (320 pixels per line by 400 lines per image) of the ryegrass blades (at 558, 740 and 937 nm wavelengths). The image was 
captured directly above the plant. b Raw HSI image of forage of the ryegrass pseudostems after harvesting the top half of the plant (at 558, 740 and 
937 nm wavelengths). The image was captured directly above the plant. c Forage heat map of ryegrass at 1080 nm (red denotes high reflectance 
and blue denotes low reflectance). d Region of interest (ROI) for the ryegrass (white pixels)
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(550–900 nm) (Table 3). Conversely, we found that wave-
lengths in the 550–900 nm and the 900–1700 nm ranges 
each provided a similar prediction of nitrogen % with a 
calibration R2 of 0.62 (900–1700  nm) compared to 0.71 
(550–900  nm) (Table  3). This highlights that the rela-
tive importance of wavelength ranges for the prediction 
of nitrogen and total sugars is dependent on the attrib-
ute. However, total sugars and nitrogen models based 
on the full wavelength range 550–1700  nm were supe-
rior to the respective individual VNIR (550–900  nm) 
and extended NIR (900–1700  nm) models, which high-
lights the value of obtaining spectral information over 
a broad range of wavelengths for accurate prediction of 
these attributes. Key wavelengths for the prediction of 
total sugars (based on PLSR(VIP)) are 548–573, 642–750, 

1332–1460, 1509–1519, 1558–1627, and 1676–1696 nm. 
Key wavelengths for the prediction of nitrogen (based on 
PLSR(VIP)) are 548–582, 637–755, 888–893, 932–937, 
1351–1415, and 1514–1696 nm.

There were differences in the nitrogen, total sugar, 
LMW and HMW sugar concentration between pseu-
dostems and leaves in the 15 plants with wet chemistry 
measurements (Fig.  4). The pseudostems had a nitro-
gen concentration of 2.1 ± 0.35% whereas the blades 
had a nitrogen concentration of 3.2 ± 0.32% (difference 
of 1.1 ± 0.13% (P < 0.001)). Higher nitrogen concentra-
tions in the blades are consistent with other studies that 
observed that the nitrogen concentration in leaves was 
~ 50% greater than the stems of 99  day old perennial 
ryegrass plants [25] and mature ryegrass [26], although 
this is dependent on season and the time period after 
harvesting. In contrast, the pseudostems had a larger 
total sugar concentration of 153 ± 53  mg/g compared 
to leaves with a concentration of 60 ± 18  mg/g (differ-
ence of 93 ± 15  mg/g (P < 0.001)). This difference was 
associated with a difference (P < 0.001) in the HMW sug-
ars between the pseudostems (75 ± 39  mg/g) and leaves 
(17 ± 14 mg/g) and a similar difference (P < 0.001) in the 
LMW sugars between the pseudostems (77 ± 15  mg/g) 
and leaves (43 ± 7.5  mg/g). LMW sugars are 2.5 times 
more concentrated in the leaves than the pseudostems 
compared to HMW sugars. Plants with high concentra-
tions of nitrogen, total sugar, LMW or HMW sugar in 
the leaves also had corresponding high concentrations of 
nitrogen, total sugar, LMW or HMW sugar in the pseu-
dostems (R2 = 0.50–0.89; P < 0.01).

There are significant differences between the mean 
spectra of PS and BL plants (Fig.  5a). Pseudostems 
have a characteristic high reflectance at 800–1100  nm 
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Fig. 2  Distribution in mean forage reflectance spectra in the ROI for 
blades across the 37 ryegrass genotypes

Fig. 3  a Validated model performance for total sugars expressed as mg/g for the 2016 trial (BL + PS HSI reflectance spectra analysed by PLSR (SNV) 
model; Validation R2 = 0.58, n = 66, LV = 12, RMSE = 34.4 mg/g, intercept = 10.1 ± 9.6 mg/g, slope = 0.93 ± 0.10, bias = − 3.8 mg/g). b Validated 
model performance for Nitrogen % for the 2016 trial (BL + PS HSI mean reflectance spectra analyzed by PLSR (SNV) model; Validation R2 = 0.70, 
RMSE = 0.35%, n = 64)
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Table 1  Model performance for the 13 forage attributes based on full spectrum

Models are based on the mean reflectance HSI spectra analysed by PLSR model (Blades (BL) + pseudostems (PS) and blades (BL) only; Standard Normal Variate (SNV) 
preprocessing

Variable HSI # LV PLSR Calibration Validation

R2 RMSE # images Min. Max. Mean SD R2 RMSE # images Min. Max. Mean SD

LMW (mg/g) BL + PS 8 0.54 13.90 131 22.3 127.4 53.9 20.4 0.26 17.60 64 23.0 121.3 54.1 20.3

HMW (mg/g) BL + PS 12 0.68 19.90 129 2.4 167.5 36.2 35.1 0.63 21.60 66 3.1 144.1 37.1 35.0

Sugars (mg/g) BL + PS 12 0.70 28.90 129 26.7 252.8 90.0 52.2 0.58 34.40 66 27.1 244.5 91.5 52.8

Visual yield (%) BL + PS 4 0.43 2.85 25 11.4 26.5 19.9 3.7 0.12 3.24 12 14.6 25.9 20.3 3.3

NDF (%) BL + PS 11 0.38 2.53 123 38.7 53.1 45.9 3.2 0.19 2.98 62 38.7 53.8 45.9 3.3

ADF (%) BL + PS 16 0.59 1.39 123 21.1 30.2 25.7 2.2 0.36 1.68 62 21.6 30.2 25.9 2.1

Nitrogen (%) BL + PS 20 0.86 0.25 127 0.4 4.65 3.2 0.7 0.70 0.35 64 1.6 4.72 3.21 0.6

DOMD (% DM) BL + PS 9 0.43 1.36 120 60.0 69.4 65.2 1.8 0.25 1.50 61 61.2 69.2 65.3 1.7

ME (MJ/kg DM) BL + PS 9 0.43 0.22 120 9.6 11.1 10.4 0.3 0.25 0.24 61 9.8 11.1 10.4 0.3

DM (%) BL + PS 13 0.45 0.52 124 92.9 96.4 94.5 0.7 0.13 0.64 63 93.0 96.2 94.5 0.7

Ash (%) BL + PS 21 0.70 0.66 125 5.7 12.6 9.8 1.2 0.50 0.80 62 6.5 12.2 9.9 1.1

Ca (mg/g) BL + PS 6 0.18 0.97 127 1.6 7.9 4.3 1.1 0.17 0.91 60 2.5 7.2 4.3 1.0

OM (%) BL + PS 12 0.62 0.91 125 80.7 89.5 84.6 1.5 0.43 1.04 62 81.2 88.4 84.6 1.4

LMW (mg/g) BL 8 0.51 13.60 121 22.7 127.4 51.9 19.3 0.26 17.40 59 23.1 121.3 52.5 20.0

HMW (mg/g) BL 13 0.73 16.90 121 2.4 167.5 32.8 32.5 0.71 18.50 59 3.1 136.2 34.5 33.8

Sugars (mg/g) BL 12 0.71 27.00 119 26.7 252.8 85.5 50.1 0.54 32.80 61 27.1 244.5 85.1 47.8

Visual yield (%) BL 4 0.42 2.86 25 11.4 26.5 19.9 3.7 0.05 3.35 12 14.6 25.9 20.3 3.3

NDF (%) BL 10 0.35 2.56 116 38.7 53.1 45.7 3.2 0.14 3.01 54 38.7 53.8 45.5 3.2

ADF (%) BL 8 0.34 1.78 113 21.1 30.2 25.6 2.2 0.41 1.61 57 21.6 30.2 25.8 2.1

Nitrogen (%) BL 9 0.61 0.34 115 1.9 4.6 3.3 0.5 0.52 0.39 61 2.1 4.7 3.3 0.6

DOMD (% DM) BL 9 0.47 1.27 112 60.6 69.4 65.3 1.7 0.33 1.44 54 61.2 69.2 65.3 1.7

ME (MJ/kg DM) BL 9 0.47 0.20 112 9.7 11.1 10.4 0.3 0.33 0.23 54 9.8 11.1 10.4 0.3

DM (%) BL 9 0.33 0.58 113 92.9 96.4 94.5 0.7 0.11 0.63 59 93.0 96.2 94.5 0.7

Ash (%) BL 21 0.87 0.43 116 5.7 12.6 9.9 1.2 0.55 0.77 56 6.5 12.2 9.9 1.1

Ca (mg/g) BL 5 0.18 0.96 117 1.6 7.9 4.4 1.0 0.08 0.93 55 3.0 7.2 4.4 0.9

OM (%) BL 15 0.72 0.80 113 80.7 89.5 84.6 1.5 0.50 0.98 59 81.2 88.4 84.6 1.4

Table 2  Model performance of HSI models for nitrogen (PS + BL) (%) (ryegrass blades (BL) + pseudostem (PS))

Calibration based on 66% data, with validation performed on the remaining 33% of data. Partial Least Squares Regression (PLSR) with latent variable selection based 
on the Adjusted Wold’s R criterion with thresholds on unity (AW) and 0.99 (AW0.99), Partial Least Squares Regression (PLSR) with wavelength selection according to 
Competitive Reweighted Adaptive Sampling (CARS) and Variable Importance Projections (VIP), Gaussian Process Regression (GPR), Support Vector Machine (SVM), 
Random Forest Regression (RF), Multiple Linear Regression (MLR), Stepwise Multiple Regression (SMLR), lasso regularization for linear regression (LASSO) and Robust 
Multiple Regression (RMLR)

HSI, Nitrogen (BL + PS) R2 calibration (N = 127) RMSE calibration (%) R2 validation (N = 64) RMSE 
validation 
(%)

PLSR (AW) 0.86 0.25 0.70 0.35

PLSR (AW0.99) 0.78 0.31 0.71 0.34

PLSR (CARS) 0.36 0.53 0.62 0.39

PLSR (VIP) 0.63 0.40 0.63 0.38

GPR 0.45 0.49 0.30 0.53

SVM 0.69 0.37 0.60 0.40

RF 0.67 0.38 0.14 0.58

MLR 0.77 0.32 0.67 0.36

SMLR 0.76 0.32 0.62 0.39

LASSO 0.73 0.34 0.65 0.37

RMLR 0.70 0.37 0.51 0.44
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(reflectance of 1.1 for PS compared to 0.7 for BL at 
1100  nm) and a characteristic low reflectance at 1200–
1500 nm respectively (reflectance of -1.2 for PS compared 
to -0.7 for BL at 1500 nm). The spectra were used to clas-
sify the genotypes into PS and BL groups (Fig. 5b). This 
highlights that the spectral profiles of the pseudostems 
and leaves of ryegrass plants are different.

The HSI predicted distribution in the concentration 
of nitrogen and total sugars prior to the first cut are 
shown in Fig. 6a, b respectively for the image in Fig. 1a. 
These predictions are independent of the lighting gra-
dients inherent with the experimental setup illustrated 

in Fig. 1a. Nitrogen concentration was predicted to be 
1–2.5% at the base of the plant (PS) and 2.5–4% at the 
top of the plant (BL). The total sugar concentration was 
100–250  mg/g at the base of the plant (PS) but only 
40–100 mg/g at the top of the plant (BL). These predic-
tions for the spatial distribution of nitrogen and total 
sugars within the plant are consistent with the signifi-
cant differences in the wet chemistry measurements of 
nitrogen and total sugars between the blades and pseu-
dostems (Fig. 4a, b). This highlights the ability of hyper-
spectral systems to predict not only between plant 
differences in attributes, but also the variation in these 
attributes within a single plant.

Fig. 4  a Relationships between the measured sugar concentrations in the pseudostems (PS) and blades (BL) of the 15 ryegrass plants with wet 
chemistry data. There are positive relationships for measured high molecular weight sugar (HMW) (R2 = 0.89, RMSE = 4.9 mg/g, slope = 0.34 ± 0.03), 
low molecular weight sugar (LMW) (R2 = 0.50, RMSE = 5.6 mg/g, slope = 0.36 ± 0.10), and total (R2 = 0.84, RMSE = 7.7 mg/g, slope = 0.32 ± 0.04). 
Total sugar concentration is 100–250 mg/g at the base of the sward (PS) and 40–100 mg/g at the top of the sward (BL). b Relationship between 
the measured total nitrogen % in the pseudostems (PS) and blades (BL) of 15 ryegrass plants with wet chemistry (R2 = 0.83, RMSE = 0.14%, 
slope = 0.84 ± 0.11). Nitrogen concentration is 1.5–2.5% at the base of the sward (PS) and 2.5–4% at the top of the sward (BL)

Fig. 5  a Differences in the mean HSI spectra (SNV) between leaves (blue) and pseudostems (red). b Grouped scatter plot of the first two canonical 
variables obtained from a one-way multivariate analysis of variance of the PS + BL mean HSI spectra (n = 200). The first canonical variable provides a 
clear separation between ryegrass genotypes with blades (black crosses) and pseudostem (red circles)
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Discussion
The models developed in this study provide a rapid 
screening tool for selection of the best genotypes with-
out the need for ongoing wet chemistry measurements. 
However, our calibration dataset of 120 plants is not 
large enough to cover a broader range of these traits. 
Therefore, these prediction models are expected to 
improve for calibration datasets with a larger number 
of samples such as the 1000–4000 laboratory analyzed 
samples in larger studies [9, 27]. Despite this, our mod-
els provide accurate, repeatable and rapid prediction of 
ryegrass quality traits under field conditions. In addi-
tion, our predictions of plant chemistry potentially pro-
vides a method to classify different plant species that 
have different chemical composition [28–30] (e.g. clo-
ver and/or weeds) for mixed sward-based applications 
such as high/low nitrogen species content and/or nitro-
gen fertilizer delivery [13, 14].

Hyperspectral data can be used to obtain informa-
tion on the quality of forage on both spatial and tem-
poral scales [8, 10]. This extra information can be used 
to parameterize mathematical models of forage growth 
and their response to environmental and management 
variables (e.g. climate and grazing) [31]. Hyperspectral 
data also provide information for testing the underlying 
assumptions of these mathematical models and revi-
sion and improvement of the models accordingly. The 
amalgamation of hyperspectral data with plant model-
ling will also allow for in-field assessment of plants and 
their diurnal and seasonal nutrient flows. These are 

traits and interactions that are difficult and time-con-
suming to objectively measure otherwise.

The cross-validation error (RMSE calibration) for NDF 
(RMSE = 2.53%), soluble sugars (2.89%), DOMD (1.36%) 
obtained by HSI (550–1700 nm, raw pasture) in this study 
are smaller or comparable to those obtained by NIRS by 
Corson et  al. [4], for NDF (calibration RMSE = 2.79%), 
soluble sugars (calibration RMSE = 1.38%), DOMD (cali-
bration RMSE = 3.37%) (1100–2500  nm, 60  °C dried 
and ground pasture samples). However, the NIRS model 
developed by Corson et al. [4], was calibrated over a wider 
range of NDF (17.8–78.0%), soluble sugar (1–25%) and 
DOMD (55–85%) values. Furthermore, the cross-valida-
tion error (RMSE calibration) for ADF (RMSE = 1.39%) 
and Ash (RMSE = 0.66%) are smaller or comparable to 
those obtained by NIRS by Pullanagari et al. [32], for ADF 
(RMSE = 2.13%) and Ash (RMSE = 0.74%) (350–1500 nm 
for field measured samples over a sample area of 0.25 m2 
using the ASD FieldSpec® Pro FR spectroradiometer), 
although our samples are not calibrated over as wide an 
attribute range.

Our current models were based on 550–1700  nm 
waveband range and are likely to be less informa-
tive than models calibrated over a broader range of 
wavelengths (350–2500  nm) [3, 7, 32]. We found that 
wavelengths in the extended NIR range 900–1700  nm 
provided a much better prediction of total sugars than 
wavelengths in the visible near-infrared 550–900  nm 
wavelength range. However, the two ranges provided a 
similar prediction of % nitrogen. This indicates that low 

Fig. 6  a The HSI predicted distribution in % nitrogen in the same plant shown in Fig. 1a. White denotes the background and regions with very 
low reflectance. Nitrogen concentration is 1–2.5% at the base of the sward (PS) and 2.5–4% at the top of the sward (BL). b The HSI predicted 
distribution in the total concentration of sugars (mg/g) in the same plant shown in Fig. 1a. White denotes the background and regions with very 
low reflectance. Total sugar concentration is 100–250 mg/g at the base of the sward (PS) and 40–100 mg/g at the top of the sward (BL)
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cost visible near-infrared 400–1000 nm devices [24] are 
likely to provide satisfactory predictions of nitrogen but 
are likely to provide poorer prediction of the concen-
tration of sugar in forage.

Differences in the nitrogen, total sugar, LMW and 
HMW sugar concentration between pseudostems and 
leaves of the same genotypes and even individual plants 
show the imbalanced distribution of these components 
in perennial ryegrass. The significantly higher nitrogen 
concentration in leaves than in the pseudostems was 
consistent with other studies [25]. The very high sugar 
concentration in pseudostems compared to the leaves 
was also consistent with previous studies using destruc-
tive methods, although this was dependent on the 
ryegrass cultivar, plant age and time of day [20, 26, 33]. 
We also used our model calibrations to predict the dis-
tributions in the concentrations of nitrogen and sugar 
within an individual plant at an individual pixel scale 
(sub leaf scale). Our predictions in the spatial distribu-
tion in nitrogen and total sugars within the plant were 
consistent with the measured differences in nitrogen 
and total sugars between stems and leaves in studies 
using destructive measures [20, 25, 26, 33]. This high-
lights the potential for hyperspectral imaging to predict 
the concentration and distribution of the components 
within an individual plant and the opportunity to con-
duct non-destructive and continuous experiments on 
the changes in the nutrient distribution within ryegrass 
plants.

The high positive correlation of nitrogen, total sugar, 
LMW or HMW sugar in the leaves with those in the 
pseudostems indicates that models calibrated to mate-
rial from the upper zones of the plant will provide biased 
predictions of the average concentration of these compo-
nents within the entire plant. The partitioning of sugar 
is consistent with previous studies of the distribution of 
sugars within ryegrass that found that the concentration 
of total sugar in the pseudostem was more than twice 
that in the leaf, although dependent on the cultivar, plant 
age and time of day [20, 26, 33]. However, the whole plant 
predictions of these traits will be correlated with the 
actual concentrations of these traits. The slope, intercept 
and error variance for this relationship, however, will 
depend on the ryegrass cultivar, plant age, time of day 
and plant structure. This highlights that bias and error 
can be introduced when extrapolating model predictions 
to regions of forage that have not been subject to hyper-
spectral calibration analysis. The identification of the dif-
ferences in the spectral signatures of the pseudostems 
and leaves can be used to define the region of interest in 
an image for trait prediction (e.g. only in the leaves). It 
can also be used for spectral un-mixing procedures for 
forage imaged at greater distances from the ground [34].

Although the same approach and procedures can be 
used for other species of grasses, there will be species-
specific challenges as the shape, shading and leaf overlap 
will vary across species. Furthermore, each species has 
its own chemical variation in different organs or sections 
of the plant. Therefore, species-specific models may be 
required for more accurate prediction of traits of interest.

Conclusions
This study examines the utility of Hyperspectral Imag-
ing (HSI) based methods for non-invasive assessment of 
the composition of ryegrass. The quality of forage is an 
important component of animal performance and envi-
ronmental impact in pasture based production systems. 
Hyperspectral image data (550–1700 nm) were obtained 
from 185 individual ryegrass (Lolium perenne) plants 
that were also assessed for 13 forage quality attributes 
including nitrogen and sugar content. We used this data 
to develop models to predict these quality attributes of 
ryegrass and these provide for more accurate, repeatable 
and rapid prediction of ryegrass quality attributes under 
field conditions. We also examined ten different chemo-
metric methods for predicting the forage attributes and 
established that partial least squares regression models 
performed favorably for the size of our calibration data-
set. We also examined the relative importance of differ-
ent wavelengths for the prediction of the different quality 
attributes and these can be used to make informed deci-
sions about suitable sensors for field deployment of spec-
tral systems. We also observed significant differences in 
the concentrations of nitrogen and sugars between the 
pseudostems and leaves of the plants and demonstrated 
the ability for hyperspectral systems to predict these 
differences within the plant. The use of hyperspectral 
systems will allow for more rapid genetic selection of 
desirable ryegrass attributes and provides an in-field tool 
to investigate the interactions between forage genetics, 
animal production and environmental outcomes in pas-
toral-based agricultural systems.

Methods
Plant material
Thirty-seven wild accessions and cultivars of peren-
nial ryegrass (Lolium perenne L.) plants were clon-
ally replicated (n = 5) and grown in individual pots in 
a fully-randomised complete block (n = 185 plants in 
total), outdoors at the AgResearch Grasslands cam-
pus in Palmerston North, New Zealand (40.3804°S, 
175.6138°E). Plant seeds originated from differ-
ent European countries, NZ and Australia. Clones 
were produced by dividing one plant into five 5-tiller 
plants and potted in prepared soil mix with slow 
release Osmocote. Plants were kept outside but under 
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overhead irrigation so that the plants did not dry out 
during periods with no rain. Plants were 3 months old 
when harvested. For each plant, total leaf material was 
harvested, within 1  min after hyperspectral scanning, 
by cutting at 4 cm above the soil surface. Leaf material 
was immediately snap-frozen in liquid nitrogen. For a 
subset of three genotypes × 5 clonal replicates (n = 15 
plants), pseudostems (PS) and upper leaf blades (BL) 
were scanned and harvested separately. All samples 
were held at − 80  °C prior to freeze-drying. Freeze-
dried material was milled and subsequently analysed by 
wet chemistry. The ratio of leaf blade: pseudostem was 
also recorded for each plant.

Wet chemistry
The low molecular weight (LMW), high molecular 
weight (HMW) and total sugars for each plant were 
measured via water soluble carbohydrate (WSC) analy-
sis and expressed as mg/g (mean of 3 replicates). Ash (%), 
nitrogen (%), neutral detergent fibre (NDF; %), acid deter-
gent fibre (ADF; %), DOMD (% DM), ME (MJ/kg DM), 
DM (%), Ca (mg/g) and OM (%) were also measured for 
each plant. This provided a data set of 185 samples for 
leaf blades or lamina and an additional 15 samples for 
pseudostems.

WSC were determined by liquid/gas chromatog-
raphy–mass spectrometry based technique [35]. Dry 
matter and Ash/OM were determined by AOAC 
930.15/925.10/942.05. For Ash determination the sam-
ple was ignited at 500 °C to burn off all organic material. 
The inorganic material not volatilized at this temperature 
is the ash. For dry matter determination the moisture 
of the sample was removed by volatilization caused by 
heating at 105  °C for 16  h. The amount of material left 
after the removal of the moisture was defined as the dry 
matter. Total Nitrogen was determined by Leco CN ana-
lyzer, AOAC 968.06 [36]. The sample was weighed into 
tin foil capsule, loaded into the furnace and combusted 
in a stream of oxygen. The products of combustion were 
then passed through a secondary furnace for further oxi-
dation and particulate removal. The moisture free gases 
were then swept through a heated copper catalyst under 
helium flow to remove oxygen and convert NOx to N2, 
and the nitrogen content was determined with a ther-
mal conductivity cell. The crude protein content of the 
sample was obtained by multiplying total nitrogen con-
tent by 6.25. Calcium was determined by preparation 
AOAC 968.08D followed by colourimetric analysis. The 
estimation of DOMD followed the method of Roughan 
and Holland [37]. NDF/ADF were determined by 
Ankom. Metabolizable Energy (ME) was determined by 
calculation.

Hyperspectral imaging
The Hyperspectral Line Scanning Imaging System 
(Hyperspec® Extended VNIR, Headwall Photonics, 
Fitchburg, MA, USA) with 235 wavebands captured 
between 550 and 1700  nm for each of 320 pixels in a 
line and 400 lines per image was used to capture spectra 
from the samples. Hyperspectral images were captured 
before and after harvesting the top half of the plant (BL 
and PS images respectively). A 50 mm lens with a focal 
length of 25 mm, pixel pitch of 30 µm and an f-stop of 2.8 
were used for imaging all samples. A moving stage sys-
tem was used at a speed of 11.1 mm/s and with an image 
write speed of 25 frames per second. The spatial resolu-
tion was calculated by the Hyperspec™ software and 
the HSI camera exposure setting was fixed at 28  ms. A 
single line beam halogen light source (30o angle of inci-
dence from vertical, 400 W) was used to illuminate sam-
ples and all 185 plants were scanned. Measurements were 
undertaken on the 22nd of March 2016 in a dark room 
at the AgResearch Grasslands site, Palmerston North, 
New Zealand. A total of 452 images were collected 
with either two or three images per plant from directly 
above depending on the quality of image capture and 
the general morphology of each plant. White and dark 
reference samples were collected for each image with a 
200 mm × 50 mm Spectralon white reference tile and the 
lens cap on respectively. The reflectance (R) of each pixel/
sample was calculated using these white (W) and dark 
(D) reference samples according to the equation

where the calibrated image reflectance is obtained from 
the raw image irradiance (I) and the dark and white refer-
ence images.

Analysis
Approximately 128,000 spectra were collected per hyper-
spectral image, however, only a portion of these contain 
information about the sample of interest. An algorithm 
was developed to automatically segment the images 
into ryegrass regions of high spectral reflectance. This 
was defined by the region with R ≥ 0.3 (reflectance at 
1080  nm, which was chosen as this wavelength is not 
much affected by water content), which was representa-
tive of the harvested region.

Multivariate analysis of the spectra was conducted 
using partial least squares regression (PLSR). Partial 
least squares regression is a widely accepted regression 
modelling approach that effectively deals with multi-
collinear data [38]. Models tested were based on the 
mean spectrum. The mean spectrum were calculated 
from 29,228 ± 18,255  HSI pixels, which represents on 

(1)R =

I − D

W − D
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average 23% of the total number of HSI pixels. Models 
were based on the average spectrum from the 2–3 rep-
licate images captured per plant. In total, three plants 
with an average number of pixels less than 5000 were 
not used in the analysis. Reduced models were also 
evaluated based on the average of 1, 2 or 3 images cap-
tured per plant. Models for visual yield also included 
the number of pixels as a predictor. Models were devel-
oped using two methods: 1) only the blades mate-
rial (BL) and 2) the blades and pseudostem material 
(BL + PS).

The predictive models were calibrated and cross-vali-
dated using two-thirds of the data set. The calibration 
data set was used to fit the chemometric models that 
allow forage composition to be predicted from spectral 
data obtained from HSI. The remaining one-third of the 
data set was used for model validation.

Standard normal variate (SNV) pre-processing meth-
ods were applied to the mean spectral data [39]. The 
number of latent variables for PLSR was identified using 
tenfold cross-validation (CV) with 100 Monte Carlo 
replicates applied to the calibration data set. Mod-
els were built using varying numbers of latent vari-
ables (LV) from 1 to 50 and applied to the validation 
set to generate performance values of R2 and root mean 
squared error (RMSE) [40]. Based on the regression 
Ymeasured = a + b × Ypredicted, the validation slope (b), inter-
cept (a) and bias (expected predicted-observed) were 
also calculated. The optimal number of latent variables 
is determined by selecting the calibration model with the 
smallest RMSE (Adjusted Wold’s (AW) R criterion with 
threshold of unity and 0.99; denoted AW and AW0.99) 
and results are reported for the AW criteria unless oth-
erwise specified.

Models were also obtained based on Partial Least 
Squares Regression (PLSR) with wavelength selection 
according to Competitive Reweighted Adaptive Sam-
pling (CARS) and Variable Importance Projections (VIP), 
Gaussian Process Regression (GPR), Support Vector 
Machine (SVM), Random Forest Regression (RF), Multi-
ple Linear Regression (MLR), Stepwise Multiple Regres-
sion (SMLR), lasso regularization for linear regression 
(LASSO) and Robust Multiple Regression (RMLR) [27].

Models were explored using the data over the wave-
length ranges 550–900 nm and 900–1700 nm separately 
to investigate the likely predictive power of different 
wavelength ranges from visible to extended NIR available 
in hyperspectral cameras at AgResearch.

Based on the PLSR(VIP) analysis we determined that 
558 nm and 740 nm are key wavelengths for both nitro-
gen and sugars and 937 nm is a key wavelength for nitro-
gen estimation. The wavelengths 558 nm and 740 nm are 
also influenced by chlorophyll content. For this reason 

558, 740, and 937  nm were selected as wavelengths to 
visualize the HSI images of forage (Fig. 1).

Multivariate linear regression was also used to inves-
tigate the effect of plant material (BL or PS) and plant 
genotype on the mean HSI spectra [41]. One-way mul-
tivariate analysis of variance was also used to compare 
the multivariate means in the mean HSI spectra data 
grouped by plant material type (PS, BL). The analysis was 
based on spectral data from every 2nd wavelength (117 
bands). Scatter plots were used to visualize the group 
separation using the first two canonical variables.
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