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Abstract 

Background:  The next-generation sequencing (NGS) technology has greatly facilitated genomic and transcriptomic 
studies, contributing significantly in expanding the current knowledge on genome and transcriptome. However, the 
continually evolving variety of sequencing platforms, protocols and analytical pipelines has led the research commu‑
nity to focus on cross-platform evaluation and standardization. As a NGS pioneer in China, the Beijing Genomics Insti‑
tute (BGI) has announced its own NGS platform designated as BGISEQ-500, since 2016. The capability of this platform 
in large-scale DNA sequencing and small RNA analysis has been already evaluated. However, the comparative perfor‑
mance of BGISEQ-500 platform in transcriptome analysis remains yet to be elucidated. The Illumina series, a leading 
sequencing platform in China’s sequencing market, would be a preferable reference to evaluate new platforms.

Methods:  To this end, we describe a cross-platform comparative study between BGISEQ-500 and Illumina HiSeq4000 
for analysis of Arabidopsis thaliana WT (Col 0) transcriptome. The key parameters in RNA sequencing and transcrip‑
tomic data processing were assessed in biological replicate experiments, using aforesaid platforms.

Results:  The results from the two platforms BGISEQ-500 and Illumina HiSeq4000 shared high concordance in both 
inter- (correlation, 0.88–0.93) and intra-platform (correlation, 0.95–0.98) comparison for gene quantification, identi‑
fication of differentially expressed genes and alternative splicing events. However, the two platforms yielded highly 
variable interpretation results for single nucleotide polymorphism and insertion–deletion analysis.

Conclusion:  The present case study provides a comprehensive reference dataset to validate the capability of 
BGISEQ-500 enabling it to be established as a competitive and reliable platform in plant transcriptome analysis.

Keywords:  Alternative splicing, BGISEQ-500, Differential expressed genes, Illumina HiSeq4000, Next-generation 
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Background
The past three decades witnessed a rapid advance in 
functional genomics, where gene transcription has 
emerged as an important research indicator for the study 
of functional genomics. Recently, transcriptome analysis 
has been accepted as a popular large profiling technique 
to reveal gene regulatory networks in both animals and 
plants [1–3]. The collection of methods which compre-
hensively and systematically analyze the transcriptome 
has been steadily increasing, both in their throughput 
and application range, eventually leading to better quality 
of data. Initial attempts regarding transcriptome analy-
sis are based on oligonucleotide hybridization and array 
technologies. The establishment and gradual progression 
of next generation sequencing devices has resulted in 
high throughput RNA sequencing (RNA-seq) technology, 
defined as next-generation sequencing (NGS) [1–3], a 
routine laboratory practice in transcriptome analysis. The 
NGS’s capability of profiling the entire transcriptome, in 
addition to whole genomes, exomes and targeted gene 
regions and its dynamic range to detect subtle changes 
in expression level, has made significant impact in aca-
demic research, diagnostics and industry [1–3]. Since the 
last decade, the majority of efforts focused on reducing 
the prime cost while increasing sequencing accuracy and 
throughput for NGS platforms. Different from array-
based technology, RNA-seq expands our knowledge on 
pervasive transcription of eukaryotic transcriptomes [4, 
5], which enables to uncover the unexpected complexity 
of genomic regions which were once considered silent or 
antisense genes. The NGS approach has facilitated con-
venient and detailed study of new and informative fea-
tures of transcription, such as novel transcript assembly, 
the regulation of untranslated regions (UTR), alterna-
tive splicing variants and the generation of small or non-
coding RNAs [6–9]. Furthermore, during recent years, 
the comparison between RNA-seq and microarrays for 
transcriptome analysis has been carried out by several 
research groups. Particularly, the superior performance 
of RNA-seq is mainly attributed to its better resolution, 
lower variation and higher dynamic range than microar-
ray-based transcriptome analysis [10–13]. However, the 
potential and capacity of RNA-seq needs to be explored 
in depth, and should be carefully investigated based on 
case studies and appropriate bioinformatic tools.

At present, a number of sequencing platforms such as 
Illumina HiSeq series and Roche 454 platform and RS/
SEQUEL series from Pacific Biosciences (PacBio) have 
been developed by leading sequencing service provid-
ers worldwide. However, each platform is differed in its 
instrumentation and sequencing protocols such as library 
preparation procedures, base-calling mechanisms and 
measurement technology [14–17]. Thus, comparative 

studies among different sequencing platforms have been 
conducted to assess the intra- and inter-platform repeat-
ability and reproducibility by using targeted RNA sam-
ples [18–20]. One classic example is from a case study 
in model yeast Saccharomyces cerevisiae [18], which 
focused on detailed intra-platform comparison adopt-
ing Illumina HiSeq series. The above study assessed the 
robustness of different platforms in of gene quantifica-
tion, three different alignment algorithms, two assembly 
strategies (reference genome-based and de novo assem-
bly) and five statistical methods have been used in order 
to validate the consistency of identifying differentially 
expressed gene (DEG) within Illumina HiSeq platforms 
and in comparison to conventional microarray datasets. 
High correlation has been reported between Illumina 
HiSeq and array based analysis using different combina-
tion of aforementioned approaches. Another large-scale 
cross-platform comparison has been performed by the 
Association of Biomolecular Resource Facilities (ABRF) 
members [19]. In total, replicate experiments from 15 
laboratories, 4 library construction protocols, 3 size frac-
tions of library and 5 sequencing platforms have been 
subjected for comprehensive evaluation. The outcome of 
this cross-site comparison study among 15 ABRF labo-
ratories has generated an early standard for performing 
NGS analysis on animal samples.

Although single molecule long-read sequencing plat-
form has been developed since several years ago, rep-
resentative platforms such as PacBio series and Minion 
(Oxford Nanopore Technologies) are not widely used 
in plant transcriptome studies accounting to their high 
cost and low throughput [21]. The above two platforms 
have yet to reach the performance and dynamic range 
similar to those of NGS platforms with further advance-
ment of their sequencing technology. At present, a wide 
range of NGS platforms are available in the sequencing 
market of China. Among these platforms, the Illumina 
series had gained its position as one of the most widely 
used sequencing platforms and have generated a sub-
stantial part of transcriptome data in the past 5  years 
probably due to its stable performance, lower error 
rate and relatively low cost in transcriptome analysis. 
In 2016, BGI announced its own NGS platform des-
ignated as BGISEQ-500 [22]. The general NGS work-
flow and stepwise sequencing procedures of the newly 
developed BGISEQ-500 are similar to those of Illumina 
series; yet the two templates have marked differences. 
The subsequent DNA nanoball technology specifically 
used for library preparation in BGISEQ-500 platform 
is different from the library construction protocol used 
in Illumina series [23]. Initial tests in DNA sequencing 
confirmed the platform’s potential to generate high qual-
ity data in DNA-related NGS applications [24–26]. The 
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performance of this platform has been subsequently val-
idated in small RNA profiling in comparison to Illumina 
series [20]. BGISEQ-500 utilizes both single end (SE) 
and paired end (PE) modes which are comparable to lat-
est Illumina model, HiSeq4000. The announced data on 
throughput of BGISEQ-500 was relatively high, which is 
potentially suitable for high throughput transcriptome 
studies. Even though it has been already validated for 
small RNA profiling, a comprehensive evaluation of the 
performance of BGISEQ-500 in transcriptome analy-
sis has not been recorded to date. To this end, we used 
two Arabidopsis thaliana (WT, Col-0) seedling samples 
exposed to dimethyl sulfoxide (DMSO) or abscisic acid 
(ABA) (three replicates of each), to explore the capa-
bility of this platform in transcriptomic profiling. For 
comparison, Illumina HiSeq4000 was used as a control 
platform along with BGISEQ-500. Key parameters in 
current plant transcriptome studies including DEGs, 
alternatively spliced (AS) events, single nucleotide pol-
ymorphism (SNP), and insertions–deletions (INDEL) 
were comprehensively validated between these two plat-
forms. Results indicated that both platforms have high 
inter- and intra-platform repeatability in gene quantifi-
cation, DEG and AS analysis, but present a relative low 
correlation in SNP and INDEL identification. We discuss 
the possible underlying causes for the above and put for-
ward our suggestions for enhancement of transcriptome 
analysis with respect to the two platforms subjected for 
comparison.

Results
RNA samples and sequencing protocols for inter‑platform 
comparison
Being an in-house developed sequencing platform, the 
capability of BGISEQ-500 in transcriptome analysis 
needed to be verified using a range of target biological 
samples along with a reference platform as a standard. 
Meanwhile, Illumina HiSeq4000 is currently recognized 
as a widely used sequencing platform and gained popu-
larity in the sequencing market of China, and thereby 
proves to be a suitable reference platform in evaluation 
of newly developed platforms. Therefore, we performed 
a comparison between the Illumina HiSeq4000 and 
BGISEQ-500 in two NGS applications; transcriptomic 
profiling and identification of alternative splicing. Two 
RNA samples, DMSO and ABA-treated Arabidopsis 
seedlings (triplicate per sample), were used for this 
comparison. The functionality of the two platforms of 
our consideration differs from each other in several 
aspects. Accordingly, the library construction proto-
col for BGISEQ-500 sequencing was different from 
that of for HiSeq platforms. The procedure of bubble 
adapter ligation in BGISEQ series library preparations 

is a unique step and is patent protected. Furthermore, 
incorporation of DNA nanoball (DNB) technology 
during the library construction steps in BGISEQ-500 
has yielded several benefits. Initially, the formation of 
DNA nanoball is based on the rolling-circle replication 
which utilizes the same original template circle to gen-
erate each new copy, ensuring that replication errors 
are minimized and prevented from amplification. Sec-
ondly, millions of nanospots which contain more DNA 
copies guarantee a high SNR imaging for accurate and 
precise base calling. Thirdly, cPAS chemistry, along 
with linear RCR amplification allows higher sensitiv-
ity for identification of low-abundance/expressed spe-
cies with high call confidence. Last but not the least, 
single-tube library preparation, carried out in a single 
low-volume solution, allows easy process automation 
for more consistent results. An overview of this proto-
col is presented in supplemental materials of this arti-
cle (Additional file  1: Figure S1). Initially, we applied 
strand-specific libraries for PE100 sequencing mode 
in both platforms. The sequencing mode PE75 from 
strand-nonspecific libraries was used as an additional 
dataset for comparison. The brief analytical pipeline for 
both platforms including initial quality check, reads fil-
tering, mapping to Arabidopsis genome and subsequent 
transcriptome-related analysis following the standard 
procedures has been published previously (Fig.  1) [27, 
28]. The quality assessment and platform comparison 
will be discussed in the forthcoming sections.

Fig. 1  Schematic view of analytical pipeline of this study. SNP single 
nucleotide polymorphism, INDEL insertion–deletion, AS alternative 
splicing, DEG differentially expressed genes
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Base and raw data quality
The basic parameters of three sequencing datasets are 
presented for all the replicates (Table 1). Approximately 
an average of 70  Mb raw reads was produced for each 
replicate. Among these, over 94% of data were regarded 
as clean data after filtering. The percentage of clean 
reads was comparable between HiSeq4000 PE100 and 
BGISEQ-500 PE100, whereas the average percentage of 
clean reads in BGISEQ-500 PE75 samples was higher 
than those in the other two datasets (Table 1 and Fig. 2a). 
In addition, quality values were recorded for all the rep-
licates and Q20 comparison showed that BGISEQ-500 
PE75 took advantage than the other two sequencing 
modes (Fig. 2a) data quality. In particular, all three plat-
forms were detected with biased quality values in first 16 
bases, which is a generally known effect caused by reverse 
transcriptase at priming step during library preparation 
[29]. This phenomenon also affected the GC composi-
tion among all the replicates (Additional file 1: Figure S2). 
Subsequent reads mapping was performed among reads 
from three sequencing datasets. On average, over 96% 
and 91% of clean reads could be mapped to Arabidopsis 
genome and genes for all the three datasets, respectively. 
No obvious differences were observed among these 
three datasets (Fig. 2b). However, two BGISEQ datasets, 
BGISEQ-500 PE100 and BGISEQ-500 PE75 on average, 
possessed a slightly higher percentage of mapped reads in 
comparison with the data generated by HiSeq4000 PE100 

mode. Furthermore, no variations were detected among 
the three sequencing methods in reads distribution along 
genes (Fig. 2c), suggesting that BGISEQ-500 platform can 
achieve similar sequencing quality to HiSeq4000 using 
both PE and SE modes for transcriptome analysis.

Intra‑ and inter‑platform comparison of gene detection 
and quantification
In transcriptome analysis, the identification of DEG is 
of considerable importance for the majority of research 
projects. Thus, we further compared the capacity of 
BGISEQ-500 and HiSeq4000 platforms on gene detec-
tion and quantification. Approximately 22,000 genes 
were detected across the three datasets. Over 97% of 
genes were commonly detected by all three sequenc-
ing approaches (Fig.  3a). In addition, the two BGISEQ 
approaches were slightly higher in their gene detec-
tion and quantification with respect to the number of 
total identified genes and transcripts, but lower in the 
number of identified novel genes and transcripts than 
that of HiSeq approach (Additional file 2: Table S1). All 
three approaches shared fairly consistent expression 
density distribution and accuracy in quantification of 
both low and high abundance genes (Fig. 3b–d). Intrigu-
ingly, hundreds of method-specific genes were identi-
fied uniquely by each sequencing approach (Fig.  3a). In 
comparison to unique genes identified by HiSeq4000, 
most of the unique genes detected by BGISEQ-500 

Table 1  Summary of basic parameters in three RNA sequencing datasets

Sample Total raw 
reads (Mb)

Total clean 
reads (Mb)

Genome mapped 
reads (Mb)

Gene mapped 
reads (Mb)

Genome 
mapping rate 
(%)

Gene 
mapping 
rate (%)

HI-SEQ4000
PE100

1_DMSO_6 h_1 70.14 65.81 63.59 60.22 96.62 91.50

2_DMSO_6h_2 70.14 67.00 64.78 61.59 96.68 91.92

3_DMSO_6h_3 70.14 65.54 63.09 59.47 96.26 90.74

4_ABA_6h_1 70.14 66.44 63.52 59.48 95.60 89.53

5_ABA_6h_2 70.14 67.02 64.72 61.60 96.57 91.92

6_ABA_6h_3 70.14 66.86 64.46 60.82 96.41 90.97

BGI-SEQ500
PE100

1_DMSO_6h_1 72.10 67.00 65.44 61.19 97.67 91.33

2_DMSO_6h_2 69.63 65.85 64.53 63.06 97.99 95.77

3_DMSO_6hJ_ 69.62 65.80 64.14 62.02 97.47 94.25

4_ABA_6h_1 69.57 65.99 64.69 62.97 98.03 95.42

5_ABA_6h_2 69.57 65.78 64.63 63.13 98.25 95.97

6_ABA_6h_3 69.64 65.47 64.16 62.75 98.00 95.85

BGI-SEQ500
PE75

1_DMSO_6h_1 69.50 67.80 65.76 63.39 96.99 93.50

2_DMSO_6h_2 69.69 67.79 65.49 63.25 96.60 93.31

3_DMSO_6h_3 68.16 66.41 64.41 61.99 96.99 93.34

4_ABA_6h_1 67.36 65.67 63.71 61.49 97.02 93.64

5_ABA_6h_2 67.92 66.26 64.25 62.05 96.96 93.64

6_ABA_6h_3 69.71 68.02 66.68 64.06 98.03 94.18
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platform were concentrated at low abundance interval 
(i.e. FPKM ≤ 1) (Additional file  1: Figure S3A–C). We 
suggest that the detection of a greater number of low 
abundance transcripts by BGISEQ-500 could be a con-
sequence of the nanoball-based linear amplification fea-
ture utilized by the platform. Furthermore, the intra- and 
inter-platform repeatability was assessed by using one 
sample named as DMSO_6h_1. All three sequencing 
methods showed a high level of Spearman and Pearson 
correlations when two parallel libraries generated from 
the same sample were used in analysis (Additional file 1: 
Figure S4A, B). Similarly, inter-platform measurement 
showed high consistency in gene quantification among 
all three sequencing approaches with minor differences. 

In particular, both Spearman and Pearson correlation 
rankings for the 3 sequencing approaches in their gene 
detection and quantification are as follows: HiSeq4000 
PE100 versus BGISEQ-500 PE100 > BGISEQ-500 PE75 
versus BGISEQ-500 PE100 > HiSeq4000 PE100 versus 
BGISEQ-500 PE75 (Additional file 1: Figure S4C, D).

Detection of differentially expressed genes and alternative 
splicing
To examine the ability of BGISEQ-500 and Illu-
mina platforms in DEG detection, we compared 
the DEG lists identified from above three sequenc-
ing approaches. The analytical pipeline was normal-
ized for all repeats and significant DEGs were defined 

Fig. 2  Comparison of sequencing quality among BGISEQ-500 PE75, BGISEQ-500 PE100 and HiSeq4000 PE100. a Base quality representation for 
clean reads and Q20. b Reads quality evaluation and mapping percentage. c Reads distribution along the relative position of genes
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as FDR ≤ 0.05 and fold change ≥ 2. In total, over 3200 
DEGs were identified in each sequencing approach by 
DEseq2, a well-known method for DEG identification. 
Both BGISEQ-500 PE100 and BGISEQ-500 PE75 were 
able to identify approximately 200 more DEGs than that 
of HiSeq4000 PE100 mode. All the three approaches 
detected a higher percentage of DEGs (~ 90%) (Fig. 4a), 
indicating high correlations among three sequencing 
methods in two different platforms (Fig. 4b). However, 
approximately 10% of DEGs were uniquely present in 
each sequencing approach (Fig. 4a), implying approach-
specificity of each sequencing method. Furthermore, 
pathway and gene ontology (GO) analysis revealed that 
the three sequencing approaches could result in simi-
lar biological interpretations (Fig.  4c and Additional 

file 1: Figure S5). Out of the topmost 20 biological path-
ways identified during analysis, seventeen pathways 
were commonly detected by all the three sequencing 
approaches (Fig. 4c), and a similar number of GO terms 
was enriched as well (Additional file  1: Figure S5). In 
order to test the validity of biological significance pre-
sented by the above three sequencing approaches, four 
additional methods were then applied for DEG identi-
fication, namely; AudicS, Cuffdiff, DEGseq and edgeR 
(Additional file  1: Figure S6A–D). As described pre-
viously, different DEG calling methods may result in 
varying total number of DEGs. However, a high con-
cordance of biological interpretation was detected 
among all the DEG datasets generated by these five dif-
ferent methods (Additional file 1: Figures S6E, S7–10).

Fig. 3  Repeatability of gene detection and quantification among three sequencing approaches. a Venn diagram representation of gene detection. 
Expression density distribution (b), boxplot gene expression graph (c), high and low abundance transcripts quantification (d) for all the replicates 
tested by three sequencing approaches in this study
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As an important post-transcriptional modification, 
alternative splicing (AS) is gaining much attention in 
recent years, as one of the major mechanisms to gen-
erate transcriptome diversity. In this context, the abil-
ity of each sequencing platform under comparison to 
detect splicing junction and corresponding alternative 
splicing pattern were subsequently analysed across 
transcriptomes. In general, all three datasets detected 
over 40,000 AS events in both DMSO- and ABA-treated 

samples (Fig. 5). In contrast to the above level of detec-
tion, the percentage of AS events commonly to the 
three datasets was less than 80%. In comparison to 
the outcome of DEGs and gene quantification by the 3 
sequencing approaches, the percentage of common AS 
events in the datasets generated by the above meth-
ods show a larger variation. Among these, two post-
transcriptional events (alternative transcription start, 
ATS and alternative polyadenylation, APA), which has 

Fig. 4  Differentially expressed genes determination among three sequencing approaches. a Venn diagram representation of DEG calling in each 
sequencing approach. b Cross-platform comparison in DEG detection. c Pathway enrichment of each sequencing approach. Black, pathways 
enriched in all the three approaches; Red, pathways enriched in two approaches; Orange, pathways enriched in one approach. A, alpha-Linolenic 
acid metabolism; B, Anthocyanin biosynthesis; C, Biosynthesis of secondary metabolites; D, Biosynthesis of unsaturated fatty acids; E, Carotenoid 
biosynthesis; F, Cutin, suberine and wax biosynthesis; G, Flavonoid biosynthesis; H, Galactose metabolism; I, Glycerolipid metabolism; J, Indole 
alkaloid biosynthesis; K, Metabolic pathways; L, Other glycan degradation; M, Biosynthesis of secondary metabolites in phenylpropanoid pathway; 
N, Plant hormone signal transduction; O, Plant-pathogen interaction; P, Starch and sucrose metabolism; Q, Phenylpropanoid biosynthesis; R, Other 
terpenoid biosynthesis; S, Zeatin biosynthesis; T, MAPK signaling pathway; U, Peroxisome; V, Fatty acid metabolism; W, Pentose and glucuronate 
interconversions; X, Phenylalanine metabolism
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been reported to affect the transcript diversity [30], had 
similar variation range in comparison to that of total 
AS events (Fig. 5c, d). Particularly, alternative 5′ splice 
site (AE5′) and alternative 3′ splice site (AE3′) showed 
lower variation range (6–9%) among three sequencing 
approaches than the average variation range detected 
for the total AS events (19–24%) (Fig. 5c, d). In contrast, 
in the cases of exon skipping (SKIP), multiple exon 
skipping (MSKIP), intron-retention (IR) and multiple 
intron-retention, BGISEQ-500 PE100 presented a data-
set completely different from the other two sequencing 

approaches in ABA-treated samples (Additional file  1: 
Figure S11A, B). In general, intra-platform variations 
among three sequencing approaches were smaller 
than that of inter-platform comparisons (Additional 
file  1: Figures  S12–14). Furthermore, each sequencing 
approach produced a distinct dataset on the identifica-
tion of two recently identified AS events [21], alterna-
tive first exon (AFE) and alternative last exon (ALE) in 
both inter- (Additional file 1: Figure S11A, B) and intra-
platform comparisons (Additional file  1: Figure S15). 
However, the causes of these variations remain unclear 
and need to be further investigated.

Fig. 5  Comparison of alternative spliced events identification. Venn diagrams representation of AS events identification in DMSO- (a) and 
ABA-treated (b) samples by each sequencing approach. Venn diagrams to represent c AS events in DMSO-treated and d ABA-treated samples. ATS 
alternative transcription start, APA alternative polyadenylation, AE5′ alternative 5′ splice site, AE3′ alternative 3′ splice site
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Identification of single nucleotide polymorphisms 
and insertion–deletion mutation
Single nucleotide polymorphisms (SNP) are insertion–
deletion mutations (INDELs) which are crucial genomic 
features to reveal genetic variation. High throughput 
transcriptome analysis is capable in investigating how 
these DNA variations can be transcribed into RNA mes-
sengers to affect subsequent protein function. In this 
study, we examined the competency of BGISEQ-500 
sequencing platform to detect SNP variations at the 
transcript level. On average, BGISEQ-500 approaches 
(PE100 and PE75) were able to identify more SNP events 
than that of HiSeq4000 approach (Table 2 and Additional 
file  1: Figure S16). However, all three sequencing meth-
ods had relatively low repeatability for both intra- and 
inter-platform comparisons by using either transcript or 
CDS sequences. Only 30–40% of SNP events could be 
repeatedly identified in replicates. The repeatability of 
intra-platform comparison with respect to SNP detec-
tion was ranked as BGISEQ-500 PE100 > HiSeq4000 
PE100 > BGISEQ-500 PE75 (Additional file  1: Figure 
S16). Similar observations were recorded in INDEL 
analysis (Table  3 and Additional file  1: Figure S17). The 
low repeatability of these two analyses could be account-
able to the presence of non-repeatable  6N random 
primer introduced mutations during sequencing library 
construction.

Discussion
High performance of BGISEQ‑500 in transcriptome analysis
Up to date, this article represents the first cross-plat-
form comparison to evaluate BGISEQ-500 in tran-
scriptome analysis. The results from the present study 
provide reference datasets to examine key parameters 
utilized in the transcriptome analytical pipeline. The 
intra- and inter-platform correlations of gene quan-
tification, DEG detection, AS identification, SNP and 
INDEL detection between BGISEQ-500 and Illu-
mina HiSeq4000 sequencing platforms have been 
critically evaluated. Previous reports mentioned that 
BGISEQ-500 has similar throughput and turnaround 
time to that of HiSeq2500 platform in DNA sequenc-
ing of human genome [25]. Furthermore, more even 
read distribution than HiSeq data has been observed in 
previous miRNA analysis with respect to BGISEQ-500 
platform [20]. Although the throughput was not tested 
in the present study, a similar number of starting reads 
(~ 70 Mb) was used to facilitate subsequent normaliza-
tion and comparison. Likewise, both base/read qual-
ity and read distribution pattern of BGISEQ-500 was 
comparable to those of HiSeq4000 (Fig. 2 and Table 1). 
In addition, high correlations of gene detection and 
DEGs/AS identification (Figs.  3, 4, 5) suggest that 
BGISEQ-500 has the capability for efficient transcrip-
tome analysis. Especially, the consistency in biological 

Table 2  Summary of SNP identification

Sample A–G C–T Transition A–C A–T C–G G–T Transversion Total

HI-SEQ4000
PE100

1_DMSO_6h_1 264 158 422 84 84 57 71 296 718

2_DMSO_6h_2 284 186 470 67 74 52 47 240 710

3_DMSO_6h_3 254 202 456 62 66 49 57 234 690

4_ABA_6h_1 297 201 498 91 96 58 68 313 811

5_ABA_6h_2 250 192 442 75 66 42 64 247 689

6_ABA_6h 3 248 181 429 63 86 43 51 243 672

Average 266 187 453 74 79 50 60 262 715

BGI-SEQ500
PE100

1_DMSO_6h_1 491 264 755 240 305 49 77 671 1426

2_DMSO_6h_2 342 177 519 178 244 38 48 508 1027

3_DMSO_6h_3 460 223 683 323 411 40 67 841 1524

4_ABA_6h_1 348 217 565 178 256 46 70 550 1115

5_ABA_6h_2 324 211 535 165 209 41 47 462 997

6_ABA_6h_3 308 200 508 150 189 31 41 411 919

Average 379 215 594 206 269 41 58 574 1168

BGI-SEQ500
PE75

1_DMSO_6h_1 384 191 575 295 432 60 128 915 1490

2_DMSO_6h_2 381 223 604 239 378 64 120 801 1405

3_DMSO_6h_3 394 191 585 251 362 59 126 798 1383

4_ABA_6h_1 398 178 576 292 368 57 105 822 1398

5_ABA_6h_2 349 182 531 210 303 48 90 651 1182

6_ABA_6h_3 323 167 490 202 273 44 90 609 1099

Average 372 189 560 248 353 55 110 766 1326
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interpretation from DEGs was supported by five dif-
ferent DEG calling methods. By incorporating more 
methods in DEG analysis such as limma [31], may fur-
ther increase the confidence of this conclusion. How-
ever, the data generated in this study was solely based 
on model dicot plant Arabidopsis, for which high qual-
ity and rigorously annotated genomic information is 
already available. Further evaluation is required to test 
the transcriptome compatibility of BGISEQ-500, espe-
cially with respect for those plant species with no refer-
ence genome sequences available, or other eukaryotic 
samples such as animals and fungi.

In comparison to Illumina series, BGISEQ-500 pos-
sesses fundamental differences in terms of library prepa-
ration and sequencing strategy [23]. The success of this 
platform provides yet another set of reliable sequenc-
ing approaches for any experiments dealing with NGS 
analysis including research conducted using either 
DNA or RNA sequencing techniques. However, further 
improvements such as sequencing quality and standard-
ized protocols, strand-specific library construction and 
bias correction, are needed to improve the performance 
of BGISEQ series for it to be applied in the other NGS 
sequencing applications (e.g. epigenomic and metagen-
omic sequencing; LncRNA analysis).

Platform‑based variations in transcriptome analysis
Although previous studies proposed that comprehen-
sive data mining projects can be applied to datasets 
generated by different platforms despite the intrinsic 
variations [19], in our present work, we express our par-
ticular concern on the phenomena of platform variations 
and their effect in identification of AS, SNP and INDEL 
during transcriptome analysis. Previous comparative 
studies have indicated that considerable variation can be 
detected between BGISEQ-500 and HiSeq platforms in 
miRNA identification [20]. In our study, approximately 
20% of AS was uniquely identified by each platform 
(Fig. 5), especially for AS events like AFE and ALE, which 
is shown large variations in both inter- and intra-plat-
form comparisons (Additional file 1: Figures S11 and 15). 
Thus, the authenticity of such AS events is needed to be 
verified by parallel independent methods such as quan-
titative real-time PCR or RT-PCR. In comparison to the 
other two sequencing approaches, BGISEQ500-PE100 
mode showed distinct AS identification in SKIP and IR-
related events (Additional file 1: Figure S11B). However, 
the underlying causes for this variation remain to be 
investigated. We observed larger variations with respect 
to SNP and INDEL calling from our dataset (Additional 
file  1: Figures  S16 and 17). Similarly, a tenfold variation 

Table 3  Summary of INDEL identification

Sample name Total number Up2k Exon Intron Down2k Intergenic

HI-SEQ4000
PE100

1_DMSO_6h_1 813 45 611 108 30 19

2_DMSO_6h_2 774 53 590 79 30 22

3_DMSO_6h_3 736 41 561 94 25 15

4_ABA_6h_1 893 48 675 128 28 14

5_ABA_6h_2 776 43 589 105 24 15

6_ABA_6h_3 820 40 618 123 31 8

Average 802 45 607 106 28 16

BGI-SEQ500
PE100

1_DMSO_6h_1 2438 65 1905 403 46 19

2_DMSO_6h_2 2342 72 1879 329 41 21

3_DMSO_6h_3 2395 71 1832 416 52 24

4_ABA_6h_1 2382 61 1898 359 40 24

5_ABA_6h_2 2128 61 1731 287 33 16

6_ABA_6h_3 1999 61 1617 278 31 12

Average 2281 65 1810 345 41 19

BGI-SEQ500
PE75

1_DMSO_6h_1 1834 65 1552 163 43 11

2_DMSO_6h_2 1459 59 1258 84 38 20

3_DMSO_6h_3 2130 87 1789 175 54 25

4_ABA_6h_1 1561 55 1318 131 42 15

5_ABA_6h_2 1288 46 1125 68 33 16

6_ABA_6h_3 1252 51 1094 67 28 12

Average 1587 61 1356 115 40 17
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for error rates in INDEL has been reported in a previ-
ous cross-platform comparison [19]. Low concordance 
may result from the different PCR steps used in library 
construction protocols [19] or could be interfered by 
plant RNA editing processes. Furthermore, as a means 
of intra-platform comparison, both strand-specific 
(BGISEQ-500 PE100) and strand-non-specific libraries 
(BGISEQ-500 PE75) have been applied for comparison 
in transcriptome analysis. From our results, no apparent 
differences were detected between the above two types of 
libraries. The only variation observed between these two 
approaches was in the identification of certain AS events, 
suggesting that the application of strand-specific library 
could achieve similar results to that of non-strand-spe-
cific library in BGISEQ-500 platform.

It is obvious that the biological significance is crucial 
for omics-based analysis, where the outcome which can 
be achieved from the experimental design largely relies 
on the consistency of sequence data. Yet, the considerably 
large variations observed among different sequencing plat-
forms may lead to false interpretations in transcriptome 
studies. Previous publications suggested that variations in 
RNA sequencing can be easily avoided by standardizing 
sequencing protocols, platforms and bioinformatic ana-
lytical pipelines for specific experiment [19]. However, this 
could be effective for studies which rely on a single type 
of platform, but not for large-scale comparative studies, 
where the analysis has to be dealt with discrete data gen-
erated from different platforms. Therefore, approaches 
which ensure increased inter-platform consistency, differ-
entiate real events from platform-specific bias and define 
the standard to manipulate the cross-platform data vari-
ations need to be extensively discussed within research 
community. Conducting cross-platform comparisons may 
help us further understand the signature of platform-spe-
cific variation. Furthermore, deepening the sequencing 
depth may increase the possibility to identify low abun-
dance transcripts and splicing junctions [19], while nul-
lifying possible inadequacies of the sequencing method. 
However, how this dynamic range is related to platform 
specific variation requires further investigation.

Potential applications in cross‑platform comparison
Cross-platform comparative studies provide valuable and 
indispensable information on sample repeatability and 
reproducibility, platform preference, bias estimation and 
the potential application of new sequencing technolo-
gies. The datasets generated from cross-platform com-
parisons are necessary for platform improvement, bias 
correction and development of suitable analytical tools 
for omics-based approaches. In the field of transcrip-
tome, this will benefit for parameters like gene detection 

and quantification, DEG and AS identification, SNP 
and INDEL observation. In addition to standard analy-
sis, other valuable information of transcriptome fea-
tures such as natural antisense transcript detection, 
gene fusions, post-transcriptional modifications (e.g. 
RNA editing) could be retrieved by cross-platform stud-
ies, and even degraded samples could be addressed [19, 
32], providing pivotal information for genome annota-
tion refinement and mechanistic studies. Given the fast 
advancement in NGS sequencing platform, the practical 
multi-platform evaluation and development of standard 
protocols needs to keep pace.

Conclusion
From the reference dataset generated by BGISEQ-500, 
we compared basic parameters in transcriptome analy-
sis between this new sequencing platform and Illumina 
HiSeq4000, elucidating the capability of BGISEQ-500 as 
an alternative choice and yet another competent platform 
for plant transcriptome analysis. This case study may 
encourage more attempts to test their transcriptomic 
data using BGISEQ-500. We look forward to further 
explore the potential of this sequencing platform using a 
wider range of samples.

Methods
Plant material, growth conditions and abscisic acid 
treatment
In general, Arabidopsis thaliana WT seeds (Col-0 back-
ground) were surface-sterilized with 20% bleach for 
30  min followed by four washes with distilled water. 
Subsequently, sterilized seeds were sown on Murashige 
and Skoog (MS) plates [33] supplemented with 0.8–1.0% 
(w/v) agar and 1.5% (w/v) sucrose. Plates were then incu-
bated under 16  h light (23  °C)/8  h dark (21  °C) cycles 
following 2  days stratification. Twelve-day-old seedlings 
were treated with DMSO control or 50 μM ABA for 6 h 
and seedlings were harvested and subjected to further 
transcriptomic analysis.

Plant RNA extraction
Total RNA of Arabidopsis seedlings was extracted 
using the RNeasy Mini Kit (Qiagen, Germany) accord-
ing to the manufacturer’s bench protocol. Two samples, 
DMSO- and ABA-treated seedlings, each with three 
biological replicates were subjected to RNA extraction. 
The extracted RNA was then quantified and assessed for 
integrity using the NanoDrop (Thermo, USA) and 2100 
Agilent Bioanalyzer (Agilent, USA) prior to subsequent 
experiments.
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Library construction and RNA sequencing in BGISEQ‑500 
platform
The strand non-specific library construction of PE75 
mode was described as follows. In total, approximately 1 
μg total RNA was initially used for BGISEQ-500 library 
construction. In general, DNase I was initially used to 
degrade double-stranded and single-stranded DNA con-
taminant in RNA samples. The mRNA molecules were 
then purified from total RNA using oligo(dT)-attached 
magnetic beads and fragmented into small pieces. 
First-strand cDNA was generated using random hex-
amer-primed reverse transcription, followed by a second-
strand cDNA synthesis. The cDNA thus synthesized was 
subjected to end-repair and 3′ adenylation. Subsequently, 
adaptors were ligated to the ends of these 3′ adenylated 
cDNA fragments. The double stranded PCR products 
were heat denatured and circularized by the splint oligo 
sequence. The single stranded circular DNAs were for-
matted as the final library for Agilent Technologies 2100 
bioanalyzer validation and subsequent PE75 sequencing.

For PE100 strand-specific library preparation, the first 
step in the workflow involved purifying the poly-A con-
taining mRNA molecules using poly-T oligo-attached 
magnetic beads. Following purification, the mRNA was 
fragmented into small pieces using divalent cations under 
elevated temperature. The cleaved RNA fragments were 
copied into first strand cDNA using reverse transcriptase 
and random primers. This was followed by second strand 
cDNA synthesis using DNA Polymerase I and RNase H. 
This process removes the RNA template and synthesizes 
a replacement strand, incorporating dUTP in place of 
dTTP to generate dscDNA. The incorporation of dUTP 
quenched the second strand during amplification. These 
cDNA fragments were added with a single ‘A’ base and 
subsequently ligated to the adapter. The resultant prod-
uct was purified and enriched with PCR amplification to 
yield the final cDNA library. The PCR yield was quanti-
fied and was subjected to single strand circularized DNA 
molecule (ssDNA circle) preparation for final library con-
struction. DNA nanoballs (DNBs) were generated with 
the ssDNA circle by rolling circle replication (RCR) to 
intensify the fluorescent signals during the sequencing 
process. The DNBs were then loaded into the patterned 
nanoarrays and pair-end reads of 100  bp were read 
through on the BGISEQ-500 platform for subsequent 
data analysis.

Library construction and RNA sequencing in Illumina 
HiSeq4000 platform
The library construction in HiSeq series was carried out 
according to the bench manual of TruSeq RNA Sample 
Prep Kit v2 (Illumina). Briefly, approximately 1 µg of total 
RNA sample was purified using oligo-dT beads, followed 

by fragmentation with Elute, Prime, Fragment Mix. First-
strand cDNA was generated by First Strand Master Mix 
and Super Script II (Invitrogen) reverse transcription 
(Reaction condition:25  °C for 10 min, 42  °C for 50 min, 
70 °C for 15 min). The product was purified (Agencourt 
RNAClean XP Beads, Agencourt), prior to the addition 
of Second Strand Master Mix and dATP, dGTP, dCTP, 
dUTP mix, to proceed with the synthesis of second-
strand cDNA (16  °C for 1  h). The purified fragmented 
cDNA was incubated at 30 °C for 30 min in presence of 
End Repair Mix. Subsequently, the end-repaired cDNA 
was purified with Ampure XP Beads (Agencourt). A-Tail-
ing Mix was then added, mixed and incubated at 37  °C 
for 30  min. The 3′end adenylated cDNA, RNA index 
adapter and ligation mix were combined and mixed, then 
incubated at 30  °C for 10  min. The end-repaired cDNA 
thus produced was then purified with Ampure XP Beads 
(Agencourt). The uracil-N-glycosylase enzyme was added 
into the reaction mixture at the final purification step, 
incubated at 37 °C for 10 min and the resulting product 
was purified using Agencourt Ampure XP Beads. Sev-
eral rounds of PCR amplification with PCR primer cock-
tail and PCR master mix were performed to enrich the 
cDNA fragments, prior to the purification of PCR prod-
ucts with Ampure XP Beads (Agencourt). The library 
quality was assessed by checking the distribution of the 
fragments size using the Agilent 2100 bioanalyzer (Agi-
lent DNA 1000 Reagents), and the library was quantified 
by using qRT-PCR (TaqMan Probe). The resultant library 
was subjected to Illumina HiSeq sequencing.

Cross‑platform RNA‑sequencing data analysis
The bioinformatic pipeline was performed as described 
previously with minor modifications [27, 28]. Raw 
sequencing reads were filtered to get clean reads by using 
SOAPnuke (v1.5.2, parameters -l 15, -q 0.2, -n 0.05) 
(https​://githu​b.com/BGI-flexl​ab/SOAPn​uke). For both 
BGISEQ-500 and HiSeq4000 derived sequencing data, 
HISAT pipeline [34] was applied to align reads against 
reference genome. StringTie [35] was then used for tran-
script reconstruction. Subsequently, Cuffcompare (Cuf-
flinks tools) [36] was utilized to compare reconstructed 
transcripts and the reference annotation of Arabidop-
sis. Coding potential of novel transcripts were predicted 
by CPC [37]. SNP and INDEL calling was carried out by 
using GATK (v 3.4-0, https​://www.broad​insti​tute.org/
gatk) [38] with parameters (call): -allowPotentiallyMisen-
codedQuals, -stand_call_conf 20.0, -stand_emit_conf 
20.0 and parameters (filter): -window 35, -cluster 3, -fil-
terName FS, -filter “FS > 30.0”, -filterName QD, -filter 
“QD < 2.0”. In addition, we have mapped clean reads to 
reference genes using Bowtie2 software [39]. Expression 
values of candidate genes were then calculated by RSEM 

https://github.com/BGI-flexlab/SOAPnuke
https://www.broadinstitute.org/gatk
https://www.broadinstitute.org/gatk
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[40]. The identification of DEGs was based on the nega-
tive binomial distribution of DEseq2 package [41], AudicS 
[42], Cuffdiff [43], DEGseq [44] and edgeR [45]. The cutoff 
of DEGs was Fold Change ≥ 2 and adjusted P value ≤ 0.05. 
The subsequent GO and pathway analysis was followed 
by previous description [21, 46–48]. Alternative spliced 
events were identified according to previous description 
by using ASprofile software (http://ccb.jhu.edu/softw​are/
ASpro​file) [49]. In brief, as described previously [21], AS 
junctions supported with two or more reads were subse-
quently used for AS events identifications.

Additional files
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three sequencing approaches. Figure S3. Comparison of method-specific 
gene quantification. Figure S4. Repeatability of gene quantification. Fig‑
ure S5. GO analysis of DEGs identified by three sequencing approaches. 
Figure S6. Methods in DEGs identification and comparisons of biological 
interpretation. Figure S7. Pathway enrichment of each sequencing 
approach by using DEG calling software AudicS. Figure S8. Pathway 
enrichment of each sequencing approach by using DEG calling software 
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of each sequencing approach by using DEG calling software edgeR. 
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