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Abstract 

Background:  Phenotyping is a bottleneck for the development of new plant cultivars. This study introduces a new 
hyperspectral phenotyping system, which combines the high throughput of canopy scale measurements with the 
advantages of high spatial resolution and a controlled measurement environment. Furthermore, the measured barley 
canopies were grown in large containers (called Mini-Plots), which allow plants to develop field-like phenotypes in 
greenhouse experiments, without being hindered by pot size.

Results:  Six barley cultivars have been investigated via hyperspectral imaging up to 30 days after inoculation with 
powdery mildew. With a high spatial resolution and stable measurement conditions, it was possible to automatically 
quantify powdery mildew symptoms through a combination of Simplex Volume Maximization and Support Vector 
Machines. Detection was feasible as soon as the first symptoms were visible for the human eye during manual rating. 
An accurate assessment of the disease severity for all cultivars at each measurement day over the course of the exper‑
iment was realized. Furthermore, powdery mildew resistance based necrosis of one cultivar was detected as well.

Conclusion:  The hyperspectral phenotyping system combines the advantages of field based canopy level meas‑
urement systems (high throughput, automatization, low manual workload) with those of laboratory based leaf level 
measurement systems (high spatial resolution, controlled environment, stable conditions for time series measure‑
ments). This allows an accurate and objective disease severity assessment without the need for trained experts, who 
perform visual rating, as well as detection of disease symptoms in early stages. Therefore, it is a promising tool for 
plant resistance breeding.

Keywords:  Hyperspectral imaging, Phenotyping platform, Greenhouse, High-throughput, Disease rating, Simplex 
Volume Maximization, Support Vector Machine
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Background
Phenotyping is a necessary and time intensive step in the 
process of breeding disease resistant crops [1–3]. Visual 
rating by humans, the common non-destructive method 
of crop phenotyping, has the disadvantage of being a 
time-consuming, subjective process, which requires 
experts or trained personnel. The application of optical 
sensors is a promising approach to overcome the draw-
backs of manual visual rating, as—with an adequate 
analysis algorithm—it is objective and can be automated, 
while allowing non-invasive measurements directly in 
greenhouses and fields [4–6]. Hyperspectral imaging 
(HSI) combines these advantages with ability to derive 
information about a large number of plant traits. Hyper-
spectral sensors have already been shown to be success-
fully integrated into automated measurement systems in 
greenhouses and fields [7, 8].

Hyperspectral sensors capture the reflectance charac-
teristics of object in large number of wavelength bands. 
Similar to RGB cameras, they measure the light which is 
reflected at the measurement target, but they are sensi-
tive in a larger area of the electromagnetic spectrum 
[9]. As a result, hyperspectral imaging cameras measure 
so called hyperspectral datacubes, which show the spa-
tial dimensions of the acquired image and additionally a 
spectral dimension with the reflectance values per wave-
length [9]. Hyperspectral imaging has been applied in 
multiple studies for biotic and abiotic stress detection in 
plants [10–13], as well as pathogen resistance assessment 
[14, 15].

However, experiments which are focused on disease 
detection at the earliest stages in pathogenesis are mostly 
performed as basic research in the laboratory on leaf 
scale. In contrast, field studies tend to focus on the detec-
tion of diseases at later stages of pathogenesis. In less 
controlled environments, environmental factors prove to 
be challenging for accurate hyperspectral measurements. 
As a result, detecting small symptoms at early stages of 
pathogen infection is more challenging. Changing light 
conditions during the measurements are the major envi-
ronmental factor, reducing the data quality. Other fac-
tors, such as wind and rain, play a minor role [16–18]. 
As hyperspectral cameras with the highest spatial and 
spectral resolutions available to date tend to be push/
whisk broom scanners, the process of image acquisition 
takes a certain amount of time [9]. During this process, 
the measurement accuracy is dependent on stable envi-
ronmental conditions. Furthermore, the angle between 
incoming light, plant and sensor has influence on the 
measurement results [19, 20].

These problems multiply, when plant canopies are 
measured instead of leaves. In a dense canopy, the differ-
ent leaves have individual angles to the light source and 

hyperspectral sensor. Furthermore, leaves are on differ-
ent layers in the canopy. This leads to varying distances 
between measured leaves, sensor and illumination. Main 
effects are that leaves are less illuminated due to shadow-
ing of the upper canopy layers and multiple scattering at 
surrounding leaves occurs [16, 21].

Common high throughput field hyperspectral measure-
ment experiments are barely influenced by these factors, 
as they are either performed airborne or with non-imag-
ing sensors, averaging the effects of canopy diversity over 
multiple leaves/plants [22, 23]. Although those proce-
dures have shown to be successful in field monitoring 
and assessment of disease spread, they lack the spatial 
resolution to accurately rate the disease severity in early 
phases of infection and pathogenesis on plants.

Currently available hyperspectral measurement sys-
tems focus either on high measurement throughput like 
canopy measurements on the field with little regard to 
changes in the environmental factors [8, 24], or on plant/
leaf level measurements under highly controlled environ-
mental conditions with low throughput [13, 25, 26]. Both 
approaches are well suited for their fields of application.

However, the hyperspectral measurement system, 
which is introduced in this study, offers a new scale, spe-
cifically for phenotyping applications in resistance breed-
ing. As it will be shown in this article, the different light 
conditions in plant canopies prove to be challenging for 
modern data analysis approaches even under nearly ideal 
measurement conditions. The proposed measurement 
system combines the high throughput of canopy based 
measurements in fields with the controlled measurement 
environment of laboratory setups in order to achieve sta-
ble data acquisition over the whole time course of disease 
development.

A greenhouse based phenotyping system, which is 
based on hyperspectral imaging, has been developed. 
The system works by growing plants in larger contain-
ers (Mini-Plots), which create a field like situation. Each 
Mini-Plot provides enough space in area and soil depth 
to grow a canopy consisting of 360 barley plants in sim-
ilar density as they would be grown in the field. A soil 
depth of 61  cm allows a more natural development of 
the plants root systems when compared to commonly 
used pots. The combination of these factors allows for 
phenotyping experiments in greenhouses under condi-
tions that resemble those of actual field experiments. 
The location of the measurement system inside a green-
house has the innate advantage, that the environmental 
conditions during the experiment can be controlled at 
any time. Thereby, the system combines the advantages 
of phenotyping test plots in the field with the possibility 
of reliable measurements on a daily basis. This circum-
vents the problem of plants, which have been grown in 
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pots in the greenhouse, showing different phenotypes 
compared to being grown under field conditions, due to 
stable environmental conditions and limited root devel-
opment [27].

Halogen lamps, equipped with diffusors, are imple-
mented in the measurement system, providing stable and 
diffuse light conditions for the hyperspectral camera. A 
transportable curtain is attached to exclude natural light, 
that may interfere with the measurement process. The 
system can perform automated measurements, allowing 
for a relatively high measurement throughput with mini-
mal human effort. These factors summarize to the system 
being a valuable middle ground between field measure-
ments under natural conditions, and low throughput 
measurements in highly controlled environments. The 
combination of tightly controlled environment and high 
measurement throughput with hyperspectral imaging 
shows the high potential of the presented system for phe-
notyping applications in resistance breeding.

To the author’s knowledge only two comparable sys-
tems exist at the time of this publication. Joalland et  al. 
[28] designed a microplot based system, where the 
response of sugar beet plants to Heterodera schachtii 
inoculation was evaluated with different measurement 
methods. The microplots, containing three sugar beet 
plants per plot, were covered with a mobile dark box with 
a halogen lamp to provide equal light conditions before 
the average spectrum of the plants was collected with a 
non-imaging spectrometer. Busemeyer et  al. [29] intro-
duced the field based measurement system BreedVision, 
which can be moved over small plots and perform meas-
urements with multiple sensors. A cover for the whole 
system provides shading and avoids direct solar radia-
tion influencing the measurements. The system includes 
a hyperspectral imaging system to measure plant mois-
ture and nitrogen content, which works with a spatial 
resolution of 3 × 5 mm. Compared to these systems, the 
Mini-Plot based system presented in this study features 
a reduced canopy effect through diffuse light conditions 
and a higher spatial resolution, which is important for the 
early detection of disease symptoms.

The system was tested by evaluating six barley cultivars 
with different disease susceptibility to powdery mildew. 
Over the course of the experiment, it could be shown 
that the gathered hyperspectral data allows an early 
detection of powdery mildew infection, as well as an 
accurate estimation of the disease severity for each bar-
ley cultivar per measurement day. The estimated values 
from the hyperspectral data analysis was consistent with 
the results of visual rating for each cultivar. Furthermore, 
it was possible to show the spatial distribution and spread 
of the pathogen over the barley plots during the time of 
the measurements.

Methods
Mini‑Plot phenotyping greenhouse
The hyperspectral measurements in this study have been 
performed in the ‘Mini-Plot’ facility at Campus Klein-
Altendorf of Bonn University, which was developed by 
the Forschungszentrum Jülich. The facility consists of a 
large enclosed greenhouse compartment and a fenced-
in outside area, where 120 large planting containers, so 
called Mini-Plots, can be placed. 90 Mini-Plots can be 
placed inside the greenhouse, while another 30 can be 
placed in the outside area (Fig. 1a, b). The experiments of 
this study were performed solely on Mini-Plots inside the 
greenhouse to be weather independent during the meas-
urement series. An automated sensor positioning system 
facilitates the precise and robotized positioning of a sen-
sor platform (Fig. 1). This allows for the cultivation of rel-
evant crop species in small canopies, while above-ground 
plant traits can automatically be measured by a modular 
sensor positioning system, which can be equipped with a 
portfolio of phenotyping sensors (Fig. 1).

Each Mini-Plot is a commercial 535 L plastic container 
(inside size 111 × 71 × 61  cm; AUER Packaging, Bel-
gium), that can be filled with local soil or other desired 
substrates, according to the goal of the experiments. 
An automated drip irrigation system is attached to each 
Mini-Plot allowing individual computer-controlled 
watering. Drainage is enabled by a loose gravel filling 
at the bottom and a valve in each container, the excess 
water can be quantified on request. Additionally, multiple 
environmental sensors are placed in the Mini-Plot area to 
monitor the environmental conditions and potential gra-
dients; monitoring includes irradiance, air temperature 
and humidity, as well as soil moisture and temperature. A 
weather station (Vaisala) is located in the fenced-in area 
outside the greenhouse to monitor weather conditions 
and to avoid outside measurements during bad weather 
conditions.

The automatic positioning system was developed by 
the Forschungszentrum Jülich in cooperation with Otte 
Metallbau GmbH & Co Kg (Harkebrügge, Germany) in 
partnership with Atlantique Automatisierungstechnik 
GmbH (Ihlow, Germany). A stable and motorized x, y, z 
rail based traversing unit is installed in the greenhouse 
and the outside area. This traversing unit moves a univer-
sal base plate, on which various sensors of up to 50 kg can 
be attached. The base-plate is moved 2 meters above the 
containers (2.8  m above ground) and can be positioned 
with an accuracy of 2  cm using fixed positioning ele-
ments at the x and y axis. The universal baseplate (includ-
ing sensors) can be lowered in z direction to facilitate 
close range measurements; technically the base plate can 
be lowered by 1 m, i.e. bringing sensors in proximity to 
the plant canopy.
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The system is controlled by an in-house developed 
application based on LabVIEW (National Instruments, 
USA). Measurements can be scheduled throughout the 
day, triggering different sensors. The base functions of 
the system (movement of the traversing unit, switching 
of the watering valves) are controlled by the Program-
mable Logic Controller (PLC). These functions can be 
controlled by the user directly as well. In the automated 
mode, the communication between the PLC (Siemens, 
Germany) of the system and the sequence control appli-
cation (LabVIEW) is facilitated using an OPC server 
(LabVIEW). The sequence application is commanding 
the measurement routine, which has been programmed 
by the user. Within a schedule file, the time when a sensor 
is triggered, the position/plot and the distance to the con-
tainer can be configured. It is possible to measure each 
plot with separate sensors during a single measurement 
sequence. The acquired data is stored on the acquisition 

computer located at sensor platform and transferred 
daily to the server.

Plant materials and pathogens
Six barley cultivars with different susceptibility to 
Blumeria graminis f. sp. hordei (Bgh), based on assess-
ment of the official German cultivar list (Descriptive 
Variety List; Bundessortenamt, Hanover, Germany), were 
used in the experiments. The used cultivars are (respec-
tive disease susceptibility rating in bracelets): Tocada (7; 
KWS Lochow GmbH, Bergen, Norway), Grace (7; Ack-
ermann Saatzucht GmbH & Co. KG, Irlbach, Germany), 
Milford (4; Saatzucht Josef Breun GmbH & Co. KG, 
Herzogenaurach, Germany), Gesine (4; NORDSAAT 
Saatzuchtgesellschaft, Halberstadt OT Langenstein, 
Germany), Eileen (2; KWS Lochow GmbH) and Irina (2; 
KWS Lochow GmbH). Each cultivar was sown into two 
Mini-Plots, with 360 seeds per Mini-Plot to simulate 

Fig. 1  Phenotyping greenhouse in Campus Klein-Altendorf with Mini-Plot facility, interior (a) and exterior (b) compartments. Schematic 
representation of the hyperspectral phenotyping system (c). The rail system of the Mini-Plot facility in combination with diffuse artificial light 
sources and a curtain allows for automatic measurement approaches under highly controlled environmental conditions. The combination of 
Specim V10E hyperspectral imaging (HSI) sensor and mirror based scanner system enables fast, high-resolution measurements of the entire 
Mini-Plot
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barley growth under field conditions. The distribution 
of the cultivars in the phenotyping greenhouse was ran-
domized to avoid location affects. Directly after sow-
ing, Plantosan fertilizer (20% N, 10% P2O5, 15% K2O, 6% 
MgO, 2% S, Wilhelm Haug GmbH &Co. KG, Germany) 
was applied according to the manufacturer’s description 
to each Mini-Plot. The experiment was performed from 
16. 09. 2016–02. 12. 2016, with low air temperatures in 
the greenhouse, following the procedure established in 
the preliminary experiment from 09. 11. 2015–18 .01. 
2016. The barley cultivars were cultivated for 4  weeks 
until sufficient surface cover to perform the experiments 
was reached. Mini-Plots, which showed development of 
powdery mildew symptoms prior to inoculation, were 
treated with sulfur (fungicide Kumulus containing 800 g/
kg sulfur, BASF, Germany) to prevent further symptom 
development. Symptomatic leaves were removed from 
the respective Mini-Plots and sulfur was washed off mul-
tiple times before inoculation. Two days before inocula-
tion with Bgh, half of the Mini-Plots were treated with 
the fungicide Vegas (containing 53.1  g/l cyflufenamid, 
BASF, Germany), to serve as negative control for the 
experiment. The other half of the Mini-Plots were inocu-
lated with conidia of Bgh field isolate from Bonn by shak-
ing heavily infested plants above the Mini-Plots.

Manual rating of disease development per barley cultivar
Both control and inoculated Mini-Plots of each barley 
cultivar were visually assessed on every measurement 
day. Plant and plant disease development were assessed 
and documented with RGB images. RGB images were 
taken from above the Mini-Plot—to achieve the same 
viewing angle as the hyperspectral imaging sensor. Fur-
thermore, close up RGB images of areas with disease 
symptoms or other anomalies—like necrotic lesions at 
resistant cultivars—were acquired.

At the last measurement day (30 dai) a visual rating of 
the inoculated Mini-Plots from each barley cultivar was 
performed [30]. Three classes of disease severity were 
defined: Low (up to 5% of the plot showing powdery mil-
dew symptoms), moderate (5% to 20% of the plot show-
ing powdery mildew symptoms) and severe (over 20% 
of the plot showing powdery mildew symptoms) disease 
severity.

Hyperspectral imaging measurement on canopy scale
The hyperspectral reflectance measurements were per-
formed with a Specim V10E hyperspectral push broom 
sensor (Spectral Imaging Ltd., Oulu, Finland), which was 
mounted on the rail system based sensor platform in the 
phenotyping greenhouse (Fig. 1). The Specim V10E sen-
sor provides hyperspectral image acquisition in the visual 
(400–700  nm) and near infrared (700–1000  nm) region 

of the electromagnetic spectrum with a spectral resolu-
tion of approximately 2.8 nm. During the measurements, 
a spatial resolution of 0.3  mm was obtained in a meas-
urement distance of 80  cm. A mirror scanner (Spectral 
Imaging Ltd., Oulu, Finland) was used to change the field 
of view of the push broom sensor in order to acquire two 
dimensional images.

Additionally, 6 halogen lamps (POWLI010 Halogen 
Floodlight 150 Watt; Varo, Belgium) were symmetrically 
distributed on the sensor platform to achieve homog-
enous lighting conditions (Fig.  1c). The glass cover of 
each halogen lamp was replaced by a frosted, highly heat 
resistant glass cover to diffuse light. Ambient natural 
light was excluded by the use of a light-proof white cur-
tain covering both the sensor platform and the measured 
Mini-Plot (Fig.  1c). The curtain also provides additional 
scattering of the light from the halogen lamps, leading 
to a more homogenous illumination of the measurement 
samples.

All Mini-Plots were measured in a time-series experi-
ment from 1 dai (days after inoculation) to 30 dai. For 
each measurement, a barium sulfate 99% reflectance 
white reference bar (Spectral Imaging Ltd., Oulu, Finland) 
was measured before the measurement of plant canopy, 
providing known illumination intensity values for image 
normalization. After each measurement (both white ref-
erence and plant canopy), a dark current measurement of 
the internal camera noise was performed with the same 
exposure time as the previous image, respectively, elimi-
nating inaccuracies during image normalization.

An additional measurement with identical observation 
parameters as described above was performed 2 h before 
the inoculation of the plants with powdery mildew, in 
order to ensure that the fungicide treatment of the plants 
had no effects on the spectral signatures. The confirma-
tory results were in accordance with previous experi-
ments [13]. Due to the lack of a pathogen, the data has 
not been included in the analyzed time series.

Analysis of the hyperspectral dataset
ENVI 5.1 + IDL 8.3 (ITT Visual Information Solutions) 
was used to normalize the hyperspectral images against 
the known values of the white reference standard, while 
subtracting the dark currents of both images. The nor-
malized images were further smoothed by the application 
of the Savitzky-Golay filter [31] to the spectral domain, 
in order to reduce noise in the spectral profiles of the 
images. Areas of the images which were not covered by 
plants, as well as areas with extremely low light intensity 
in the lower canopy were masked during the preprocess-
ing of the images. Furthermore, all images were cropped 
to the designated measurement area of the experiment.
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Simplex Volume Maximization (SiVM) was then 
applied on all preprocessed images. SiVM is an unsu-
pervised data analysis method, which selects extreme 
hyperspectral signatures of the dataset as archetypes for 
a re-parameterization of the whole dataset (Fig.  2) [32]. 
The application of SiVM leads to a reduction in size of 
the dataset and a pre-classification of the data based on 
the abundance level of each generated archetype [33]. In 
this study, the SiVM algorithm was performed with 25 
archetypes for the entire dataset of hyperspectral images, 
including control and inoculated images of each bar-
ley cultivar. Thereby, the size of the dataset was reduced 
to ~ 27% of the original size. The matrix factorization 
toolbox PYMF 0.3 [32, 34] was used for this approach.

The SiVM transformed dataset was then classified 
into healthy tissue, disease symptoms and background 
by a non-linear Support Vector Machine algorithm 
(SVM) [35]. The applied SVM uses radial basis function 
as kernel function to determine non-linear discrimi-
nant functions. As a supervised method, it is based on 
training data, i.e. manually selected samples as exam-
ples for each class, which were selected for each class 

by an expert at an unmistakable development state. The 
required hyperparameters were determined using a 
cross-validation based grid optimization. LIBSVM 3.21 
was used [36]. Training data for the SVM classification 
was selected and annotated—based on a combination 
of pseudo RGB representation and spectral information 
of the hyperspectral dataset—by an expert. The inocu-
lated Mini-Plot of barley cultivar Tocada at 22 dai was 
chosen to collect training data, due to its representative 
powdery mildew symptoms in different development 
stages and canopy layers. After manual selection of 
pixels with disease symptoms and healthy tissue in the 
different canopy layers, the gathered data was used as 
reference for the above described SVM classification. In 
order to access the accuracy of the resulting SVM clas-
sification the image of the inoculated Mini-Plot of bar-
ley cultivar Grace at 22 dai was manually annotated as 
described above. The manual annotation was compared 
with the automatic annotation of the SVM classifica-
tion result for that image, showing the accuracy of the 
automated data analysis over different cultivars despite 
the limited training data.

Fig. 2  Spectral signatures and abundance maps of healthy plant tissue and powdery mildew symptoms (mean values of 50 pixels, each). The 
spectral signatures (left) represent the mean reflectance of the pixels over the spectral measurement area of the sensor. The abundance map (right) 
shows the representation of the same mean values based on the abundance of the pixels with the 25 archetypes, which were selected during the 
transformation of the dataset with the Simplex Volume Maximization. Archetypes with high correlation to healthy or symptomatic tissue are shown 
separately, each archetype is a real spectral signature from the original hyperspectral dataset (colors of archetype spectral signatures represent the 
color of the corresponding pixels, which would be visible to the human eye). Pm powdery mildew
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Results and discussion
Visual observations and manual assessment of the spectral 
dataset
Both control and inoculated plants developed slower 
than usual over the course of the experiment and did not 
produce ears. This was expected due to low temperatures 
in the greenhouse compared to the usual growth tem-
peratures for summer barley. The slower development 
of the barley plants and the powdery mildew symptoms 
enabled long term measurements of the disease progres-
sion. Thereby, it was possible to confirm the performance 
of the non-invasive measurement setup over a prolonged 
period of time. No plant damage except the effects of the 
powdery mildew infestation could be detected during the 
measurement period of 30 days.

The plants in the control Mini-Plots showed no signs 
of powdery mildew infection from 1 to 24 dai. Starting 
at 26 dai, the control plants of the susceptible cultivars 
Milford, Grace and Tocada showed first signs of powdery 
mildew symptoms at the edges of the Mini-Plot. Mean-
while, the inoculated plants of the cultivars Milford, 
Tocada and Grace showed sporadic symptoms from 12 
dai on the edges of the Mini-Plot and first symptoms of 
strong powdery mildew infection in the measurement 
area at 14 dai (Table  1). At 18 dai, moderate infection 
in early stages could be observed at inoculated Mini-
Plots of cultivars Milford, Tocada and Grace, which did 
increase up to 30 dai. The cultivars Tocada and Grace 
showed moderate powdery mildew symptoms (Table 1). 
However, cultivar Milford showed the highest disease 
severity (severe), despite being listed with moderate 
susceptibility in the official German cultivar list. Culti-
var Eileen showed few visible symptoms at 14 dai, while 
having a low susceptibility for powdery mildew infection 
(Table  1). Cultivar Eileen, unlike the three aforemen-
tioned cultivars, showed no significant development of 
powdery mildew symptoms over the course of the experi-
ment. Despite being listed as moderately susceptible to 

powdery mildew, cultivar Gesine showed no symptoms 
until 22 dai (Table  1). From this point on, the disease 
severity steadily increased until the end of the measure-
ments at 30 dai. Some necrotic lesions became visible on 
the plants, starting at 14 dai. The cultivar Irina showed no 
signs of powdery mildew infection over the course of the 
experiment. Severe necrotic lesions over the leaves were 
visible, starting at 14 dai (Table  1). Overall, the differ-
ent cultivars showed powdery mildew development and 
disease severity according to their general rating. Only 
the cultivars Gesine and Milford interacted different 
than expected from their assessed susceptibility. Gesine 
showed a surprisingly high resistance against powdery 
mildew, with a notable delay in symptom development 
compared to other susceptible cultivars. Meanwhile, Mil-
ford, despite being listed moderately susceptible, showed 
the strongest disease severity and symptom development 
of all cultivars. These results were coherent for the Mini-
Plot experiment, as well as preliminary experiments in 
the greenhouse the Mini-Plot facility and microscopic 
analysis. The explanation is most likely the specific inter-
action of the cultivars with the used Bgh isolate.

Average spectra of pixels with powdery mildew symp-
toms and healthy tissue were extracted, unveiling the 
characteristic changes in the plants spectral signature 
upon powdery mildew infection when comparing pix-
els in corresponding canopy layers. Pixels in different 
canopy layers showed differences in the intensity of their 
spectral signatures over all measured wavelengths, as 
changes in the intensity of the incoming light and shad-
ows have a strong effect on the data. The spectral signa-
ture of infected leaves shows mostly a general increase 
in intensity, with a pronounced increase of reflection at 
650–700  nm (Fig.  3). Both pixels with powdery mildew 
symptoms and healthy tissue have the highest variety for 
different canopy layers in the near infrared area between 
750 and 1000 nm (Fig. 3). The observed variance in the 
near infrared area of the spectral profiles can be explained 

Table 1  Manual rating of  disease progression per  barley cultivar over  the  course of  the  experiment (2016; – = no 
symptoms appeared)

*According to rating of the official German cultivar list

Barley cultivar Disease susceptibility* First symptoms (dai) Relative disease severity at 30 
dai

Necrotic 
lesions visible 
(dai)

Tocada 7 14 Moderate –

Grace 7 14 Moderate –

Milford 4 14 Severe –

Gesine 4 22 Low 14

Eileen 2 14 Low –

Irina 2 – – 14
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by the high sensitivity of near infrared reflection meas-
urements to distance and angle of the target. Thomas 
et al. [13] showed, that even slight changes of leaf angles 
in framed leaves lead to high variances in the near infra-
red part of the spectrum. In the case of canopy measure-
ments, the differences in leaf angle and distance to the 
camera are greatly increased. The distance and angle of 
the white reference—serving as standard value for 100% 
light reflectance—is fixed during the measurement. This 
leads to an increase in the calculated reflectance in the 
near infrared area of the spectrum if leaves are closer to 
the sensor than the white reference. These effects were 
not corrected in this study, as the study focuses on rela-
tive detection of powdery mildew symptoms, rather than 
their spectral characterization. The changes in the spec-
tral profile of the pixels with disease symptoms are typi-
cal for powdery mildew infestation, due to the symptoms 
are visible as a layer of white mycelia on the leaf with 
minimal influence on the leaf structure [13]. Thereby, it 
proved to be difficult to distinguish spectral signatures of 
symptomatic and healthy areas, which are located in dif-
ferent layers of the canopy and thereby show differences 
in the intensity of the reflected light (Fig. 3).

Hyperspectral images acquired under artificial light 
conditions showed to be superior to images acquired 
under natural light conditions. The diffuse light of con-
stant intensity did reduce the effects of the canopy struc-
ture on the hyperspectral signatures considerably and 
increased the overall image quality. The image quality, 
with diffuse light conditions and a spatial resolution of 

0.3 mm, was sufficient to distinguish symptoms at 12 dai, 
when they were first visible with the human eye. These 
results show the importance of controlled environmental 
conditions. It was possible to perform stable measure-
ment series over prolonged time periods with compara-
ble results. Additionally, distinct advantages of equally 
distributed and diffuse lights for an improved measure-
ment quality on the canopy scale could be observed. The 
results of this study strongly suggest a notable increase 
in measurement accuracy under diffuse light conditions 
through a reduced impact of the canopy architecture on 
the light intensity differences of the individual canopy 
layers. Furthermore, the measurement system of this 
study offers a high spatial resolution (0.3 × 0.3 mm pixel 
size) when compared with similar phenotyping systems 
in the field (Busemeyer et  al. [29] with 3 × 5  mm pixel 
size) and more comparable to leaf scale laboratory setups 
[13, 16, 25].

Analysis of the acquired hyperspectral data through SVM
Due to the high data variability across the different lay-
ers of the canopy and the extensive amount of the gath-
ered hyperspectral dataset, it was necessary to perform 
advanced data analysis methods. The application of 
SiVM significantly reduced the size of the data (from 
234 to 62  GB) and pre-classified the dataset based on 
existing, extreme spectral signatures. This approach did 
increase both speed and accuracy of the SVM based 
classification. Due to the nature of hyperspectral imag-
ing, techniques for data size reduction are an important 

Fig. 3  Spectral signatures of mean values from 30 pixels on canopy levels, differing in distance to the sensor and illumination system, for both 
healthy and symptomatic tissue
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part of a functional phenotyping system. When taking 
into consideration that each image can easily reach the 
size of several gigabytes, large scale phenotyping experi-
ments are not only requiring a lot of storage space, but 
also require modern data analysis methods, which tend 
to be time consuming [20]. SiVM has the advantage that 
the structure of the data is not lost, as each spectrum is 
classified based on existing data instead of abstract vari-
ables [37]. This allows for a simplified representation with 
increased separability of the acquired data and a consid-
erable reduction in processing time using the SiVM pro-
cessed dataset in further data analysis methods.

It was possible to separate pixels showing healthy tis-
sue, powdery mildew symptoms and background into 
different classes through the combined classification with 
SiVM and SVM. Classification of the control Mini-Plots 
showed less than 2% of the pixels in the images being 
classified as diseased for all cultivars whereas up to 31% 
of the pixels are predicted as infected for the inoculated 
plots (Fig.  4). Meanwhile, the automatic disease sever-
ity estimation of the infected plants of all cultivars in the 
Mini-Plots, based on the SVM results, show matching 
results to the visual observations of the disease progres-
sion per cultivar at 30 dai (Fig. 4). Furthermore, the pro-
gression of the disease severity can be accurately tracked 
across every measurement date during the experiment. 
Validation of the SVM classification data was based on 
its application and comparison with a manually labelled 
hold-out dataset. The dataset was derived from images 
of the inoculated Mini-Plot of cultivar Grace at 22 dai to 

verify cross cultivar accuracy. The results show an accu-
racy of 94.83% for the automatic SVM classification. 
The results of this study show that the proposed hyper-
spectral phenotyping system is able to accurately assess 
the disease severity of each cultivar. Additionally, it is 
possible to monitor the exact progression of the disease 
symptoms for each plot at any time during the time series 
measurement. Combined with the high throughput of the 
canopy level measurements, the system allows for a quick 
and objective estimation of barley cultivar susceptibility 
to powdery mildew. In this study, a high potential of the 
system to be used for fully automated measurements in 
the future has been confirmed.

The results of the SVM classification can also be visu-
alized on the pixel scale for each hyperspectral image of 
the cultivars over the course of the experiment, providing 
spatial information about disease outbreak and spread 
over the course of the experiment (Fig. 5). In Fig. 5, the 
disease progression of the two cultivars with the highest 
disease severity (Milford and Tocada) is shown. The dif-
ferences in disease patterns for the cultivars from the first 
visual symptoms at 14 dai up to the final stages of pow-
dery mildew infestation can be readily assessed and ana-
lyzed for phenotyping purposes. Furthermore, the SVM 
classification is able to detect first disease symptoms at 
12 dai, when they first appeared at the Tocada and Mil-
ford cultivars. Due to the similarities of powdery mildew 
symptoms and healthy tissue with specular reflections, it 
is difficult to detect such early symptoms without mis-
classifications. However, such first symptoms contribute 

Fig. 4  Disease severity of the different barley cultivars over the course of the experiment. The disease severity was estimated based on percentage 
of pixel, which were classified as containing powdery mildew symptoms after Simplex Volume Maximization (SiVM) and following supervised 
classification by Support Vector Machines (SVM)
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only to a small degree to the proportional disease severity 
estimation. A specific and quantitative evaluation of the 
early detection was beyond the scope of the experiment 
and was not specifically regarded in the analysis. Unlike 
the results of Thomas et al. [13], which detected powdery 
mildew on barley at leaf scale under laboratory condi-
tions, it was not possible to detect infestation before vis-
ible symptoms appeared in the current study. This can 
be explained as a manual annotation of training data was 
required due to the SVM classifier. As it was impossible 
to acquire training data from pixels with powdery mildew 
infestation before they became visible to the human eye, 
the SVM algorithm could not be trained to search for 

these effects. Kuska et al. [14] were able to select powdery 
mildew infected areas before visible symptoms appeared. 
However, this was possible due to tracing position on the 
leaf from later stages in the experiment, when symptoms 
have become visible. Due to the leaf movement in the 
partially opened greenhouse, this technique could not be 
transferred to the current study. Nevertheless, the results 
show, that powdery mildew symptoms at early stages can 
be detected in the canopy with the current setup, provid-
ing valuable information for resistance breeding.

Automated assessment of necrosis due to resistance 
against powdery mildew of cultivar Irina
Necrotic spots on the leaves of barley cultivar Irina could 
be spotted in the canopy at 14 dai. Microscopic analy-
sis could identify papillae formation which prevents cell 
wall penetration of powdery mildew haustoria, as well 
as hypersensitive response (HR) as response to success-
ful penetration of epidermis cells. Due to the intensity 
of necrotic lesions on the inoculated plants, it was pos-
sible to create training data, based on the plants in the 
inoculated Mini-Plot of cultivar Irina at 14 dai and per-
form SVM classification for healthy tissue and tissue with 
necrotic lesions. As shown in Fig. 6, it was possible to dif-
ferentiate inoculated and control plants of cultivar Irina, 
based on the increase of necrotic lesions in response to 
powdery mildew inoculation. The training of the SVM 
classification had to be performed with a small number 
of samples, which could be identified by the authors due 
to large amounts of necrotic cells creating visible discol-
orations on the plant leaves. Nevertheless, these observa-
tions are promising for the application of the proposed 
hyperspectral phenotyping system for the direct detec-
tion of resistance reactions in plants as response to path-
ogen attack. For such experiments, it is possible to reduce 
the distance between camera and plants inside the Mini-
Plots. This would lead to the required higher spatial reso-
lution at the cost of a reduced measurement throughput 
and more extreme observation geometries. By the devel-
opment of modern, more compact hyperspectral cam-
eras, the measurement setup can be further simplified in 
the future [38].

Conclusion
The proposed hyperspectral phenotyping system was 
designed to enable the accurate measurements of 
basic research leaf level hyperspectral experiments, 
usually performed under controlled conditions in the 
laboratory, at a high throughput with environmental 
conditions as close to the field as possible. The con-
ducted study shows that, despite the intrinsic difficul-
ties of performing measurements on canopy scale, 
the system is able to detect disease symptoms at early 

Fig. 5  Spatial distribution of powdery mildew infestation 
development over the course of the experiment for highly 
susceptible cultivars Milford and Tocada through pseudo RGB 
images and false color images of Support Vector Machines (SVM) 
classification (green healthy tissue, red powdery mildew symptoms, 
blue background)
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stages and allow detailed assessment of disease sever-
ity and progression over extended periods of time. The 
achieved results are objectively derived and the meas-
urement process is non-invasive, allowing for repeated 
measurements without interference with the plants 
development. Moreover, it was also possible to detect 
powdery mildew resistance induced necrosis for one of 
the resistant cultivars, which is a valuable addition for 
applications in resistance breeding programs. The use 
of modern data analysis methods enabled automatic 
extraction of the results and it was possible to analyze 
the entire dataset, containing over 234  GB of infor-
mation, by creating a set of training data from a sin-
gle hyperspectral image. The proposed hyperspectral 
measurement system improves efficiency and accuracy 
of phenotyping procedures and would be a valuable 
addition in plant resistance breeding programs.

Abbreviations
HSI: hyperspectral imaging; PLC: programmable Logic Controller; Bgh: Blumeria 
graminis f. sp. hordei; dai: days after inoculation; SiVM: Simplex Volume 
Maximization; SVM: Support Vector Machines; HR: hypersensitive reaction; Pm: 
powdery mildew.

Author’s contributions
ST, JB and AKM designed the study and the hyperspectral measurement 
system. ST, JB, AS, AKM, OM and TK did help setting up and maintained the 
measurement equipment. ST performed the hyperspectral measurements. 
JB and ST performed the statistical analysis. ST and JB drafted the manuscript 
with support from AKM, AS, UR, TK and OM. All authors read and approved the 
final manuscript.

Author details
1 INRES‑Plant Protection and Plant Diseases, University Bonn, Bonn, Germany. 
2 IBG2: Plant Sciences, Forschungszentrum Jülich GMBH, Jülich, Germany. 

3 Field Lab Campus Klein‑Altendorf, University Bonn, Bonn, Germany. 4 Insti‑
tute of Sugar Beet Research (IfZ), Göttingen, Germany. 

Acknowledgements
The authors would like to thank the members of the INRES-Plant Protection 
and Plant Diseases, IBG2: Plant Sciences and Field Lab Campus Klein-Altendorf 
for their support during the experiments and fruitful discussions. Furthermore, 
the authors would like to thank the reviewers for helpful comments and 
constructive critique of the article.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The dataset, which was generated and analyzed during the study, is not 
publicly available due to the large size of the dataset. However, they can be 
provided by the corresponding author upon request.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
Funding was provided by the German Federal Ministry of Education and 
Research (BMBF) within the scope of the competitive grants program “Net‑
works of excellence in agricultural and nutrition research—CROP.SENSe.net” 
(Funding code: 0315529), junior research group “Hyperspectral phenotyp‑
ing of resistance reactions of barley”, within the German-Plant-Phenotyping 
Network (project identification number: 031A053), and by the Daimler and 
Benz foundation. The authors are furthermore thankful to Bayer CropScience 
for funding.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 7 December 2017   Accepted: 31 May 2018

Fig. 6  Classification of healthy tissue and tissue expressing necrotic lesions as response to powdery mildew infection at the resistant barley cultivar 
Irina 2 days after inoculation. False color pictures show the spatial distribution of necrotic lesions over the Mini-Plots of both control and inoculated 
plants. Additionally, the percentage of total pixels in the image being classified as showing tissue with HR for both plots is shown as bar diagram. 
The inoculated plot shows a significantly increased number of pixels, which are classified as expressing necrotic lesions



Page 12 of 12Thomas et al. Plant Methods  (2018) 14:45 

References
	1.	 Lobet G. Image analysis in plant sciences: publish then perish. Trends 

Plant Sci. 2017;22(7):559–66.
	2.	 Shakoor N, Lee S, Mockler TC. High throughput phenotyping to acceler‑

ate crop breeding and monitoring of diseases in the field. Curr Opin Plant 
Biol. 2017;38:184–92.

	3.	 Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M. Plant phenomics, 
from sensors to knowledge. Curr Biol. 2017;15(7):R770–83.

	4.	 Mutka AM, Bart RS. Image-based phenotyping of plant disease symp‑
toms. Front Plant Sci. 2014;5:734.

	5.	 Walter A, Liebisch F, Hund A. Plant Phenotyping: from bean weighting to 
image analysis. Plant Methods. 2015;11:14.

	6.	 Mahlein A-K. Plant disease detection by imaging sensors—parallels and 
specific demands for precision agriculture and plant phenotyping. Plant 
Dis. 2016;100:241–51.

	7.	 Humplík JF, Lazár D, Husičková A, Spíchal L. Automated phenotyp‑
ing of plant shoots using imaging methods for analysis of plant stress 
responses—a review. Plant Methods. 2015;11:29.

	8.	 Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford MJ. Field scana‑
lyzer: an automated robotic field phenotyping platform for detailed crop 
monitoring. Funct Plant Biol. 2017;44:143–53.

	9.	 Jensen JR. Remote sensing of the environment: an earth resource per‑
spective 2/e. Upper saddle River: Pearson Education; 2006.

	10.	 Bravo C, Moshou D, Oberti R, West J, McCartney A, Bodria L, Ramon H. 
Foliar disease detection in the field using optical sensor fusion. Agric Eng 
Int the CIGR J Sci Res Dev. 2004;6:1–14.

	11.	 Hillnhütter C, Mahlein A-K, Sikora RA, Oerke E-C. Use of imaging spec‑
troscopy to discriminate symptoms caused by Heterodera schachtii and 
Rhizoctonia solani on sugar beet. Precision Agric. 2012;13:17–32.

	12.	 Wahabzada M, Kersting K, Bauckhage C, Römer C, Ballvora A, Pinto F, 
Rascher U, Léon J, Plümer L. Latent dirichlet allocation uncovers spectral 
characteristics of drought stressed plants. arXiv preprint. 2012; arXiv​
:1210.4919.

	13.	 Thomas S, Wahabzada M, Kuska M, Rascher U, Mahlein A-K. Observa‑
tion of plant–pathogen interaction by simultaneous hyperspectral 
imaging reflection and transmission measurements. Funct Plant Biol. 
2017;44:23–34.

	14.	 Kuska M, Wahabzada M, Leucker M, Dehne H-W, Kersting K, Oerke EC, 
Steiner U, Mahlein A-K. Hyperspectral phenotyping on the microscopic 
scale: towards automated characterization of plant-pathogen interac‑
tions. Plant Methods. 2015;11:28.

	15.	 Leucker M, Mahlein A-K, Steiner U, Oerke E-C. Improvement of lesion 
phenotyping in Cercospora beticola-sugar beet interaction by hyperspec‑
tral imaging. Phytopathology. 2016;1:1–30.

	16.	 Behmann J, Mahlein A-K, Paulus S, Kuhlmann H, Oerke E-C, Plümer L. 
Calibration of hyperspectral close-range pushbroom cameras for plant 
phenotyping. ISPRS Journal of Photogrammetry and Remote Sensing. 
2015;106:172–82.

	17.	 Damm A, Guanter L, Verhoef W, Schläpfer D, Garbari S, Schaepman ME. 
Impact of varying irradiance on vegetation indices and chlorophyll 
fluorescence derived from spectroscopy data. Remote Sens Environ. 
2015;156:202–15.

	18.	 Pinto F, Damm A, Schickling A, Panigada C, Cogliati S, Müller-Linow 
M, Balcora A, Rascher U. Sun-induced chlorophyll fluorescence from 
high-resolution imaging spectroscopy data to dandify spatio-temporal 
patterns of photosynthetic function in crop canopies. Plant, Cell Environ. 
2016;39:1500–12.

	19.	 Vigneau N, Ecarnot M, Rabatel G, Roumet P. Potential of field hyperspec‑
tral imaging as a non destructive method to assess leaf nitrogen content 
in wheat. Field Crops Res. 2011;122:25–31.

	20.	 Behmann J, Mahlein A-K, Rumpf T, Römer C, Plümer L. A review of 
advanced machine learning methods for the detection of biotic stress in 
precision crop protection. Precis Agric. 2015;16:239–60.

	21.	 Sandmeier ST, Müller CH, Hosgood B, Andreoli G. Physical mechanisms in 
hyperspectral BRDF data of grass and watercress. Remote Sens Environ. 
1998;66:222–3.

	22.	 Hillnhütter C, Mahlein A-K, Sikora RA, Oerke E-C. Remote sensing to 
detect plant stress induced by Heterodera schachtii and Rhizoctonia 
solane in sugar beet fields. Field Crops Res. 2011;122:70–7.

	23.	 Cao X, Luo Y, Zhou Y, Duan X, Cheng D. Detection of powdery mildew in 
two winter wheat cultivars using canopy hyperspectral reflectance. Crop 
Prot. 2013;45:124–31.

	24.	 Bai G, Ge Y, Hussain W, Baenziger PS, Graef G. A multi-sensor system for 
high throughput field phenotyping in soybean and wheat breeding. 
Comput Electron Agric. 2016;128:181–92.

	25.	 Mahlein A-K, Steiner U, Hillnhütter C, Dehne H-W, Oerke E-C. Hyperspec‑
tral imaging for small-scale analysis of symptoms caused by different 
sugar beet disease. Plant Methods. 2012;8(1):3.

	26.	 Kuska MT, Brugger A, Thomas S, Wahabzada M, Kersting K, Oerke E-C, 
Steiner U, Mahlein A-K. Spectral patterns reveal early resistance reac‑
tions of barley against Blumeria graminis f. sp. hordei. Phytopathology. 
2017;107:1388–98.

	27.	 Poorter H, Bühler J, van Dusschoten D, Climent J, Postma JA. Pot size mat‑
ters: a meta-analysis of the effects of rooting volume on plant growth. 
Funct Plant Biol. 2012;39:839–50.

	28.	 Joalland S, Screpanti C, Liebisch F, Varella HV, Gaume A, Walter A. Com‑
parison of visible imaging, thermography and spectrometry methods 
to evaluate the effect of Heterodera schachtii inoculation on sugar beets. 
Plant Methods. 2017;13:73.

	29.	 Busemeyer L, Mentrup D, Möller K, Wunder E, Alheit K, Hahn V, Maurer HP, 
Reif JC, Würschum T, Müller J, Rahe F, Ruckelshausen A. BreedVision—a 
multi-sensor platform for non-destructive field-based phenotyping in 
plant breeding. Sensors. 2013;13(3):2830–47.

	30.	 Moll E, Flath K, Sellmann J. Schätzen der Befallsstärke—(k)ein Problem. 
Journal für Kulturpflanzen. 2009;61(12):440–2.

	31.	 Savitzky A, Golay M. Smoothing and differentiation of data by simplified 
least squares procedures. Anal Chem. 1964;36:1627–39.

	32.	 Thurau C, Kersting K, Wahabzada M, Bauckhage C. Descriptive matrix 
factorization for sustainability adopting the principle of opposites. Data 
Min Knowl Disc. 2012;24:325–54.

	33.	 Kersting K, Wahabzada M, Römer C, Thurau C, Ballvora A, Rascher U, Léon 
J, Bauckhage C, Plümer L. Simplex distributions for embedding data 
matrices over time. In: Ghosh J, Liu H, Davidson I, Domeniconi C, Kamath 
C, editors. Proceedings of the 2012 SIAM International Conference on 
Data Mining, Anaheim. California, USA; 2012. p. 295-306.

	34.	 Python matrix factorization module. https​://code.googl​e.com/p/pymf/. 
Accessed 12 May 2017.

	35.	 Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97.
	36.	 Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM 

Transactions on Intelligent Systems and Technology. 2011. https​://doi.
org/10.1145/19611​89.19611​99.

	37.	 Wahabzada M, Mahlein A-K, Bauckhage C, Steiner U, Oerke EC, Kersting 
K. Metro maps of plant disease dynamics—automated mining of differ‑
ences using hyperspectral images. PLoS ONE. 2015;10:1–20.

	38.	 Behmann J, Aceborn K, Emin D, Bennertz S, Matsubara S, Thomas S, Boh‑
nenkamp D, Kuska MT, Jussila J, Salo H, Mahlein A-K, Rascher U. Specim 
IQ: evaluation of a new, miniaturized handheld hyperspectral camera 
and its application for plant phenotyping and disease detection. Sensors. 
2018;18(2):441.

http://arxiv.org/abs/1210.4919
http://arxiv.org/abs/1210.4919
https://code.google.com/p/pymf/
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199

	Quantitative assessment of disease severity and rating of barley cultivars based on hyperspectral imaging in a non-invasive, automated phenotyping platform
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Methods
	Mini-Plot phenotyping greenhouse
	Plant materials and pathogens
	Manual rating of disease development per barley cultivar
	Hyperspectral imaging measurement on canopy scale
	Analysis of the hyperspectral dataset

	Results and discussion
	Visual observations and manual assessment of the spectral dataset
	Analysis of the acquired hyperspectral data through SVM
	Automated assessment of necrosis due to resistance against powdery mildew of cultivar Irina

	Conclusion
	Author’s contributions
	References




