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Abstract 

Background:  Leaf chlorophyll content (LCC) provides valuable information about plant physiology. Most of the pub-
lished chlorophyll vegetation indices at the leaf level have been based on the spectral characteristics of the adaxial 
leaf surface, thus, they are not appropriate for estimating LCC when both the adaxial and abaxial leaf surfaces influ-
ence the spectral reflectance. We attempted to address this challenge by measuring the spectral reflectance of the 
adaxial and abaxial leaf surfaces of several plant species at different growth stages using a portable field spectroradi-
ometer. The relationships between more than 30 published reflectance indices with LCC were analyzed to determine 
which index estimated LCC most effectively. Additionally, since the relationships determined on one set of samples 
might have poor predictive performances when applied to other samples, a robust wavelength region is required to 
render the spectral index generally applicable, regardless of the leaf surface or plant species.

Results:  The Modified Datt (MDATT) index, which is the ratio of reflectance difference defined as (Rλ3 − Rλ1)/
(Rλ3 − Rλ2), exhibited the strongest correlation (R2 = 0.856, RMSE = 6.872 μg/cm2), with LCC of all the indices tested 
when all the leaf samples from the adaxial and abaxial surfaces were combined. The optimal wavelength regions, 
which were derived from the contour maps of R2 between the MDATT index and LCC for the datasets of one side 
or both leaf surfaces of each plant species and their intersection, indicated that the red-edge to near-infrared wave-
length (723–885 nm) was optimal for λ1, while the red-edge region (697–771 nm) was optimal for λ2 and λ3. In 
these optimal wavelength regions, when the MDATT index was used to estimate LCC, an R2 higher than 0.8 could 
be obtained. The correlation of the MDATT index with LCC was the same when the positions of λ2 and λ3 were 
exchanged in the index.

Conclusions:  MDATT is proposed as an optimal index for the remote estimation of vegetation chlorophyll content 
across several plant species in different growth stages when reflectance from both leaf surfaces is considered. The 
red-edge to near-infrared wavelength (723–885 nm) for λ1, as well as the red-edge region (697–771 nm) for λ2 or λ3, 
are considered to be the most robust for constructing the MDATT index for estimating LCC, regardless of the leaf 
surface or plant species.
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Background
The detection of leaf chlorophyll content (LCC) is impor-
tant for monitoring the physiological status of plants, 
assessing plant health, and estimating photosynthetic 

potential [1]. It is also helpful for understanding light 
acclimation mechanisms in higher plants [2], and fur-
thermore, provides an indication of plant stress and 
senescence [3–6]. Although the traditional wet extrac-
tion analysis by field sampling provides the most accurate 
estimation of LCC status, such methods are not practical 
when estimates are required for large areas of vegetation. 
Non-destructive measurement of leaf spectral reflectance 
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offers an alternative, instantaneous method for assessing 
the LCC of plants over large spatial scales.

Decades of research has gone into finding chlorophyll-
sensitive wavelength regions to build vegetation indi-
ces using combinations of wavebands at different scales 
[1, 2, 5–7]. The normalized difference vegetation index 
(NDVI), based on the reflectance contrast between the 
red and the NIR (near infrared) [8], has been most com-
monly used for characterizing canopy LCC. However, 
remotely estimating canopy chlorophyll content via 
NDVI has been hindered by the shortcomings of broad-
band NDVIs derived from red wavebands positioned 
in the chlorophyll absorption pit (at approximately 
670–680  nm) and bands positioned in the NIR plateau 
(between 750 and 900 nm) [9–12]. Furthermore, broad-
band NDVIs are only effective in distinguishing broad 
differences in vegetation conditions [9, 13] but not effec-
tive in assessing detailed canopy LCC due to their satura-
tion at a high leaf area index (LAI).

Studies based on narrowband spectra have been con-
ducted to develop the vegetation indices, which take 
the form of simple ratios (SR), simple difference (SD), 
normalized difference (ND), as well as other forms to 
estimate LCC [14–23]. The vegetation indices are ini-
tially developed at the leaf level using hyperspectral 
data because an assessment of the practicality of such a 
method at leaf level is regarded as a first step for further 
research at the canopy scale and for the remote estima-
tion of LCC from satellite observation, which is essential 
in ecosystem modeling [24, 25].

However, most of these vegetation indices based on 
narrowband spectra at the leaf level were developed by 
correlating the LCC and reflectance derived only from 
the adaxial surface. The leaves of some plants, such as 
Populus, are easily agitated by light wind, causing the 
leaves to move from side to side. The leaves also curl and 
expose their abaxial surface in extreme drought con-
ditions. These factors may result in the remote sensor 
obtaining the reflectance information not only from the 
adaxial surface but also the abaxial surface. It is there-
fore potentially unsuitable to remotely assess LCC by 
measuring only the adaxial surface reflectance. The dif-
ferences in the optical properties of bifacial leaves have 
been well documented [26, 27]. To the best of our knowl-
edge, very few studies have focused on the effects of bifa-
cial structures on the accuracy of the remote estimation 
of LCC. Lu et al. [28] assessed LCC remotely, accounting 
for the dorsiventral structure of the leaves of two woody 
plants, namely white poplar and Chinese elm. Although 
the bifacial structure-insensitive index of Modified Datt 
(MDATT) was developed in our previous study, it is 
not clear whether this index is universally applicable to 
a wide range of species and leaf structures. Thus, the 

effectiveness of the index across a broader range of plant 
species requires investigation.

Generally, different wavelength combinations are 
selected for a vegetation index with a specific formula 
depending on the different samples analyzed by statisti-
cal methods. For example, some research utilized reflec-
tance at 420, 550, 605, 695, 700, 710, or 750 nm for the 
ratio index [29]. It is also common to use other indices 
with different formulas. However, the rationale for the 
selection of the wavelengths has seldom been discussed. 
This is not practical for researchers who wish to apply 
an index in their study based on the selection of a par-
ticular wavelength combination. Thus, a set of optimal 
wavelength regions may be more appropriate than spe-
cific wavelengths when reasonable estimation accuracy is 
required, whether the dataset is derived from the adaxial 
surface, abaxial surface, both surfaces, or different plant 
species with various leaf structures. The development of 
vegetation indices at either the leaf or canopy level often 
focuses on mitigating unwanted reflectance effects, while 
increasing the indices’ sensitivity to those biochemical 
and biophysical parameters of vegetation [9]. Thus, it is 
important to reduce the effect of leaf structures on the 
reflectance to accurately correlate the vegetation indices 
with LCC. The vegetation indices for which the effect of 
leaf structure has been reduced at the leaf level could be 
scaled up to the canopy level with fewer issues.

One of the aims of the present study is to examine 
which index associated with a specific formula is the 
most effective for estimating LCC across various plant 
species with different structural features when adaxial, 
abaxial, or bifacial reflectance is considered. Addition-
ally, leaves collected from different growth stages are also 
considered to render the chosen index applicable for LCC 
estimation across multiple seasons. The possible factors 
that influence the selection of various feasible wave-
lengths for different plant species are discussed. Another 
aim is to identify optimal wavelength regions for the best 
performing vegetation index to estimate LCC regardless 
of whether the reflectance data were collected from only 
one or both leaf surfaces as well as different plant species.

Methods
Developing, fully expanded, and senescent leaves of 
white poplar (Populus alba) (n  =  54), narrow-leaved 
oleaster (Elaeagnus angustifolia L.) (n =  56), Manchu-
rian lilac (Syringa reticulata (Blume) H. Hara var. amu-
rensis (Rupr.) J. S. Pringle) (n = 63), Chinese elm (Ulmus 
pumila var. pendula) (n  =  67), Virginia creeper (Par-
thenocissus quinquefolia) (n  =  57), grapevine (Vitis L.) 
(n =  60), and torch tree (Rhus typhina) (n =  56) were 
collected from the campus of the Northeast Normal Uni-
versity, Changchun, China, in the spring, summer, and 
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autumn of 2015. Leaves that were homogeneous in color 
as well as those with visible symptoms of damage were 
used in the experiments to account for possible variation 
in chlorophyll content in these types of leaves.

The leaf samples were first transported from the field 
to the laboratory, and then the adaxial and abaxial leaf 
surface reflectance spectra were measured in the spectral 
range of 400–1000 nm at a spectral resolution of 1.4 nm 
with a portable hand-held spectrometer (FieldSpec® 
HandHeld 2, Analytical Spectral Devices, Boulder, CO, 
USA). The reflectance measurements were performed 
using a leaf clipper equipped with an internal halogen 
source directly attached to the leaf surface. A Spectralon® 
diffuse reflectance standard (Labsphere, North Sutton, 
NH, USA) was scanned before each new sample. The 
reflectance of the sample was calculated as the ratio of 
leaf radiance divided by the reflectance standard radiance 
at wavelength λ; the average of three separate scans from 
each sample was recorded. The reflectance spectra were 
transformed to the published indices that have been rec-
ommended as excellent indicators of foliar chlorophyll.

LCC was determined from the same leaf samples used 
for the reflectance measurements. Circular disks with a 
diameter of 6 mm were punched from the leaves using a 
cork borer and extracted with 95% ethanol using a mor-
tar and pestle. The pigment extracts were centrifuged for 
3–5 min in glass tubes to render the extract fully trans-
parent. The resulting extracts were immediately assayed 
spectrophotometrically with a Lambda 900 spectropho-
tometer (Perkin-Elmer, Waltham, MA, USA). Specific 
absorption coefficients of Chl a and Chl b reported by 
Wintermans and De Mots [30] were used to calculate the 
chlorophyll content (μg/cm2).

More than 30 published chlorophyll indices (Table  1) 
were derived from the reflectance datasets. The selected 
spectral indices were considered to be good candidates 
for the estimation of plant LCC. In addition, we calcu-
lated two-band and three-band indices, i.e. SD, SR, ND, 
and MDATT, using the wavebands (λ1, λ2, and λ3) in the 
400–1000 nm region to select the best wavelength com-
bination for assessment of LCC, as shown in Eqs. (1–4). 
These indices were evaluated using a custom developed 
computer program to traverse each wavelength combina-
tion for the indices. The optimal combination that exhib-
ited high correlation to the biochemically measured LCC 
was then selected.

(1)SD(R�1
,R�2

) = R�1
− R�2

(2)SR(R�1
,R�2

) =
R�1

R�2

(3)ND(R�1
,R�2

) =
∣
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− R�2

∣

∣

/(

R�1
+ R�2

)

In order to obtain the optimal wavelength regions for 
the indices, the R2 values obtained from the correlation 
analysis between the spectral indices with all combina-
tions of spectral wavelengths and LCC were sorted from 
lowest to highest. Next, the contour maps of R2 between 
chlorophyll content and the vegetation indices with two 
wavelengths on the x- and y-axes were plotted. For the 
MDATT indices, contour maps for each two-wavelength 
combination were plotted to assess the statistical signifi-
cance of the spectral indices for all combinations. The 
contour R2 maps for each dataset, including the single 
or double leaf surfaces for each plant species, were inter-
sected to obtain robust wavelength regions for the spec-
tral indices.

Results
Spectral reflectance differences between the adaxial 
and abaxial leaf surfaces
The reflectance spectra investigated for the adaxial and 
abaxial leaf surfaces are shown in Fig. 1. It is evident that 
the reflectance was much lower in the visible wavelengths 
(400–700 nm) for the adaxial surface than for the abaxial 
surface in all species. On the contrary, the reflectance of 
the adaxial surface was higher than that of the abaxial 
surface in the near-infrared wavelengths (700–1000 nm). 
In addition, distinct differences in the spectral reflectance 
of the adaxial and abaxial surfaces of the different plants 
were observed. For example, the reflectance differences 
of white poplar and narrow-leaved oleaster were signifi-
cantly larger than for the other species tested (Fig. 1) in 
the visible wavelengths. The differences in reflectance 
between the adaxial and abaxial surfaces are shown in 
Fig.  2. There was a clear difference between the upper 
and lower surfaces in white poplar and narrow-leaved 
oleaster as their abaxial surfaces are covered in dense 
hair, but less variation was found in the leaves of the 
other species. The least reflectance differences between 
the adaxial and abaxial surfaces occurred almost entirely 
in the 716–732 nm wavelength range (Fig. 2).

The spectral reflectance values and the average dif-
ferences between all the samples are shown in Fig.  3. 
A similar contrasting relationship as that observed in 
the bifacial reflectance for each plant leaf sample was 
observed. The reflectance on the abaxial leaf surface was 
higher in the visible wavelength and lower in the near-
infrared wavelength (Fig.  3a). The standard deviation of 
the spectral difference (Fig. 3b) between the two leaf sur-
faces was larger than that of individual plant samples, but 
the lowest reflectance difference was 727 nm, which was 
still at the red-edge range mentioned above. Meanwhile, 
almost all the differences in reflectance were significant 
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R�3
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based on a paired t test (p  <  0.01), except for the 718–
725 nm wavelength range.

Relationship between LCC and the MDATT indices derived 
from each plant
The R2 values between LCC and all the spectral indices 
for each plant are shown in Additional file  1: Table S1. 

MDATT exhibited the best correlation with LCC for 
most of the adaxial, abaxial, and mixed datasets of each 
plant species, with only a few exceptions. The excep-
tions occurred on the abaxial surface dataset of the nar-
row-leaved oleaster, Manchurian lilac, and grapevine. 
Although MDATT did not have the highest correlation 
with LCC for this dataset, the R2 was not much lower 

Table 1  The existing vegetation indices used in this study

Vegetation index Formula Reference

1/R700 1/R700 [31]

R680 R680 [18]

1/R700 − 1/R750 1/R700 − 1/R750 [1]

1/R550 − 1/R750 1/R550 − 1/R750 [1]

SD Rλ1 − Rλ2 This paper

R750/R550 R750/R550 [32]

R750/R700 R750/R700 [32]

R860/R550 R860/R550 [33]

R672/R550 R672/R550 [33]

PSSRa R800/R680 [17]

PSSRb R800/R635 [17]

R800/R650 R800/R650 [18]

R800/R675 R800/R675 [18]

R450/R550 R450/R550 [34]

R750/R710 R750/R710 [35]

R950/R680 R950/R680 [36]

SR Rλ1/Rλ2 This paper

NDI (R750 − R705)/(R750 + R705) [37]

PSNDb (R800 − R635)/(R800 + R635) [17]

(R800 − R650)/(R800 + R650) (R800 − R650)/(R800 + R650) [18]

(R800 − R675)/(R800 + R675) (R800 − R675)/(R800 + R675) [18]

ND |Rλ1 − Rλ2|/(Rλ1 + Rλ2) This paper

D754/D704 D754/D704 [38]

RII ∫

750

705
(R�

/

R705 − 1)d� [39]

D730 D730 [39]

D710 D710 [40]

D740 D740 [40]

VOG2 (R734 − R747)/(R715 + R726) [23]

CARI (|(a*670 + R670 + b)|/(a2 + 1)0.5)*(R700/R670)
[a = (R700 − R550)/150; b = R550 − (a*550)]

[41]

R672/(R550 × R708) R672/(R550 × R708) [33]

R860/(R550 × R708) R860/(R550 × R708) [33]

MCARI [(R700 − R670) − 0.2*(R700 − R550)]*(R700/R670) [42]

TCARI/OSAVI 3*[(R700 − R670) − 0.2*(R700 − R550)*(R700/R670)]/[(1 + 0.16)*(R800–R670)/(R800 + R670 + 0.16)] [43]

TCARI 3*[(R700 − R670) − 0.2*(R700 − R550)*(R700/R670)] [44]

R705/(R717 + R491) R705/(R717 + R491) [45]

R434/(R496 + R401) R434/(R496 + R401) [45]

(R850 − R710)/(R850 − R680) (R850 − R710)/(R850 − R680) [22]

(R719 − R726)/(R719 − R743) (R719 − R726)/(R719 − R743) [28]

MDATT index: (Rλ3 − Rλ1)/(Rλ3 − Rλ2) MDATT index: (Rλ3 − Rλ1)/(Rλ3 − Rλ2) This paper
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than the best performing indices. For example, in the 
abaxial dataset of the narrow-leaved oleaster, the high-
est R2 provided by the SR index was 0.981, but MDATT 
showed an R2 value of 0.980 for the same dataset. The 
largest R2 gap between MDATT and the best performing 
vegetation index was only 0.007. The small R2 difference 
between MDATT and the well-performing vegetation 
indices indicated that MDATT correlated well with LCC 
despite it not always being ranked first among the indices 

tested. The scatter plots of the MDATT index and LCC 
for the adaxial, abaxial, and mixed datasets are shown in 
Figs. 4, 5 and 6. It is clear that MDATT was highly cor-
related with LCC for almost all datasets. With regards to 
the specific wavelengths selected for the individual data-
sets, most of the best wavelengths were at the red-edge 
except for the adaxial dataset of Manchurian lilac, Vir-
ginia creeper, and grapevine, the abaxial dataset of torch 
tree, and the adaxial and abaxial dataset of grapevine.

Fig. 1  The reflectance of the adaxial and abaxial leaf surfaces for each plant species
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Relationship between LCC and the MDATT indices derived 
from all plant samples
The R2 and RMSE (root mean standard error) values 
between LCC and the spectral indices for all the plant 
samples are shown in Table 2. The vegetation index most 
strongly correlated with LCC was MDATT regardless 
of whether the adaxial, abaxial, or mixed surfaces data-
set was used in the regression analysis. In particular, 
MDATT performed best for the data when all the leaf 

samples were combined. It is of significance that MDATT 
could predict the LCC not only across several species, 
including woody and liana plants, but also plants with 
different leaf surface structures. Although our previous 
study [28] elaborated on the significance of MDATT in 
estimating LCC for the different leaf surfaces of two 
deciduous plants, namely white poplar and Chinese elm, 
it was not previously shown that MDATT also exhibits 
good predictability for more plant species when both 

Fig. 2  The spectral differences between the adaxial and abaxial leaf surfaces for each plant species
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the adaxial and abaxial leaf surface information is con-
sidered. The relationship between the best performing 
MDATT of (R721 − R744)/(R721 − R714) and LCC is shown 
in Fig. 7. They exhibited a good linear relationship with 
an R2 of 0.856 and RMSE of 6.847 μg/cm2.

The wavelengths used to develop MDATT for all the 
plant samples fell within the scope of the red-edge irre-
spective of the use of a single surface dataset or mixed 
surface dataset (Table  2). Although the wavelengths 
selected in this study differed slightly from the results of 
Lu et  al. [28], the wavelength range was very similar to 
the above study and also exhibited zero reflectance differ-
ence between the adaxial and abaxial leaf surfaces.

Robust wavelength regions for estimating LCC 
from MDATT
The contour maps of R2 provided efficient extraction of 
significant wavelengths as well as sufficient extent of the 
effective regions for the estimation of LCC. Interestingly, 
the contour maps of R2 for the combination of λ2 and λ3 
were completely symmetrical. This indicated that these 
two wavelengths could be replaced by one another in the 
MDATT index. Although the replacement may result in a 
different MDATT index value, the correlation with LCC 
would remain unchanged. Thus, the contour maps for λ1 
and λ3 as well as λ1 and λ2 were the same and only the 
contour maps of R2 for the λ1 and λ3 as well as λ2 and λ3 
combinations are shown in Additional file  2: Figure S1, 
Additional file  3: Figure S2, Additional file  4: Figure S3, 

Additional file  5: Figure S4, Additional file  6: Figure S5, 
Additional file 7: Figure S6 and Figs. 8 and 9. 

The contour maps for each leaf surface of the individual 
plant species showed a variety of sensitive regions (Addi-
tional file 2: Figure S1, Additional file 3: Figure S2, Addi-
tional file  4: Figure S3, Additional file  5: Figure S4). For 
example, the sensitive region (R2 > 0.9) for the adaxial or 
abaxial surface of most of the species was very broad for 
almost the entire near-infrared spectrum (700–1000 nm). 
However, when the data from both leaf surfaces were 
combined, the sensitive regions for most of the plant spe-
cies shrank to a few distinct regions such as the red-edge 
wavelength and (or) green wavelengths (Additional file 6: 
Figure S5, Additional file 7: Figure S6). The R2 decreased 
to even lower than 0.85. The intersected contour map 
(Fig.  8) derived from the adaxial, abaxial, and both leaf 
surface maps for each plant species (21 in total) showed 
that the most robust wavelength combination was located 
at the red-edge area (697–771 nm) for λ2 and λ3, but was 
broader for λ1 and extended to the near-infrared (723–
885  nm). Within this region, the R2 between MDATT 
and LCC was higher than 0.8 for any arbitrary dataset 
regardless of whether the reflectance was measured from 
one or both leaf surfaces, or even different plant species. 
In the case of the samples from a combination of all plant 
species, the sensitive wavelength region was reduced to 
only the red-edge (730–760 nm for λ1; 699–747 nm for λ2 
and λ3) for the MDATT index without any other signifi-
cant regions, with an R2 higher than 0.85 (Fig. 9).

Fig. 3  The mean spectral reflectance on the adaxial and abaxial surface (a) and reflectance differences between the two leaf surfaces (b)
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Discussion
The reflectance from the adaxial and abaxial surfaces dif-
fered distinctly, and the structural differences between 
the leaf surfaces are thought to account for this. When 
radiant energy strikes a leaf, part of it is reflected by 
the leaf surface, and the rest enters the leaf, where it is 
scattered by the mesophyll structure. Part of the inter-
nally scattered radiation is reflected back out of the 
surface of incidence, and the remainder is transmitted 
through the leaf [46]. The internally scattered radiation 
is also absorbed at specific wavelengths by various leaf 

biochemicals [22]. Because both the leaf surface and the 
internal mesophyll structures of the adaxial and abaxial 
leaf blades are entirely different, the spectral reflectance 
for the same leaf blade is different. The compact structure 
of the palisade layer was found to facilitate penetration of 
adaxial light into the spongy tissue [47], where the light 
is scattered due to the large number of cell-air interfaces 
of the more loosely packed cells. For abaxial illumina-
tion, the scattering by the spongy mesophyll cells occurs 
before light can be guided into the leaf interior, which 
increases the reflectance [48]. The marked differences in 

Fig. 4  The relationship between the best performing MDATT and LCC for each plant species on the adaxial surface
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leaf surface structures also further reinforce the reflec-
tance differences. For example, the abaxial surface of 
the leaves of white poplar and narrow-leaved oleaster is 
covered with dense hair, which results in a large differ-
ence between the adaxial and abaxial surface structures. 
The difference between the reflectance obtained from the 
adaxial and abaxial leaf surfaces for these two species dif-
fered more remarkably than for the other plant species in 
this study.

The spectral indices developed thus far have performed 
well in estimating LCC using only adaxial leaf surface 
spectral information [14–23], but the majority of indices 

are compromised when the adaxial and abaxial surface 
reflectance exists at the same time as a result of the dif-
ferent structures of the two leaf surfaces. The key fac-
tors for determining an optimal spectral index are the 
formula and the wavelengths applied in the formula. The 
formula should function to remove the physical effects of 
leaf structures or surface roughness on the reflectance. 
Furthermore, the selected wavelengths should be sensi-
tive to the chemicals tested. MDATT is a spectral index 
that removes the surface and internal structural effects 
of the leaf surface on the reflectance and then derives 
an analytical relationship between leaf reflectance and 

Fig. 5  The relationship between the best performing MDATT and LCC for each plant species on the abaxial surface
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biochemical content such as LCC [28]. By sampling the 
leaves of several plant species, including both woody and 
liana plants, MDATT was demonstrated to be optimal 
not only for estimating LCC using reflectance for cases 
where the incident radiant strikes the adaxial leaf sur-
face but also from the abaxial surface or a combination 
thereof.

Because the MDATT formula removes the effect of the 
outer surface and internal structures of the different leaf 
surfaces, the wavelength regions selected for effective 

MDATT are determined by biochemicals, such as pig-
ments. However, some exceptions exist for the selection 
of the best wavelength regions beyond the red-edge; for 
example, the adaxial and abaxial mixed dataset of grape-
vine, in which 521–526 nm was chosen for λ3 of MDATT. 
Grapevine is unusual with respect to the other plants 
tested in this study because the leaves may contain other 
pigments such as anthocyanins, and these may be at dif-
ferent concentrations since the leaf samples were taken 
from almost every stage of plant growth. The color of 

Fig. 6  The relationship between the best performing MDATT and LCC for each plant species when the adaxial and abaxial surfaces data are com-
bined
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anthocyanins in the tissue changes with the environ-
ment; for example, in response to pH. Anthocyanin color 
was found to change from red to dark brown when the 
pH varied from 3.0 to 8.0 [49], and it controls the leaf 
reflectance, particularly in the visible wavelengths. The 
influence of anthocyanins on the grapevine dataset may 
explain the best wavelength region near 520  nm for λ3. 
Nevertheless, applying the red-edge region in MDATT 
also showed a good relationship with LCC for this data-
set. Thus, the best wavelength region near 520  nm for 
this dataset appeared only by chance, while the red-edge 
region was more favorable for almost all the datasets.

In addition, very short wavelength regions were also 
found to be good for the adaxial dataset of Manchurian 
lilac and Virginia creeper and the abaxial dataset of torch 
tree. The effects of sampling stage, relative contents of 
different pigments in the leaves, and the pH level per-
haps resulted in the variation of the best wavelength for 
MDATT. However, in contrast to other regions, the red-
edge region always appeared frequently.

Table 2  The coefficients of determination and RMSE of the vegetation indices for estimating the LCC on adaxial, abaxial, 
and both surfaces (only the top 15 vegetation indices with high R2 value were listed)

All plants

Adaxial and abaxial Adaxial Abaxial

VI R2 RMSE (μg/cm2) VI R2 RMSE (μg/cm2) VI R2 RMSE (μg/cm2)

MDATT: (R721 − R744)/
(R721 − R714)

0.856 6.872 MDATT: (R691 − R745)/
(R691 − R736)

0.910 5.426 MDATT: (R688 − R745)/
(R688 − R736)

0.912 5.370

(R719 − R726)/
(R719 − R743)

0.801 8.040 SR:R859/R721 0.907 5.514 D754/D704 0.854 6.904

D754/D704 0.699 9.907 ND: (R742 − R741)/
(R742 + R741)

0.906 5.545 (R850 − R710)/
(R850 − R680)

0.790 8.289

(R850 − R710)/
(R850 − R680)

0.690 10.055 VOG2:(R734 − R747)/
(R715 + R726)

0.905 5.559 (R719 − R726)/
(R719 − R743)

0.788 8.310

SR: R742/R760 0.615 11.199 R750/R710 0.894 5.878 SD: R741 − R748 0.787 8.559

ND: (R745 − R751)/
(R745 + R751)

0.614 11.205 SD: R745 − R744 0.889 6.026 D740 0.771 10.105

SD: R704 − R680 0.615 11.254 D740 0.880 6.270 SR: R740/R759 0.690 10.106

D740 0.580 11.698 RII 0.873 6.435 ND: (R740 − R760)/
(R740 + R760)

0.690 10.267

VOG2 0.548 12.127 R750/R700 0.858 6.799 D730 0.677 10.845

TCARI 0.537 12.279 D754/D704 0.848 7.053 VOG2 0.640 11.807

D730 0.520 12.507 (R719 − R726)/
(R719 − R743)

0.845 7.110 TCARI 0.521 12.505

MCARI 0.445 13.444 D730 0.830 7.456 TCARI/OSAVI 0.487 12.945

R750/R710 0.437 13.536 1/R700 − 1/R750 0.820 7.674 R750/R710 0.447 13.442

TCARI/OSAVI 0.432 13.605 (R850 − R710)/
(R850 − R680)

0.801 8.066 RII 0.413 13.842

R672/(R550*R708) 0.420 13.748 NDI 0.800 8.081 MCARI 0.392 14.084

Fig. 7  The relationship between the best performing MDATT and 
LCC for all the plant species on both adaxial and abaxial surfaces
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Fig. 8  Intersected R2 contour map of the adaxial, abaxial, and both leaf surfaces for each plant species (the dots represent the wavelength com-
bination with the highest R2 for the adaxial surface of each plant dataset, the squares represent the wavelength combination with the highest R2 
for the adaxial surface of each plant dataset, and the triangles represent the wavelength combination with the highest R2 combination for both 
surfaces of each plant dataset)

Fig. 9  Contour maps for R2 between LCC and the MDATT index with the λ1 and λ3 (a), and λ2 and λ3 (b) combinations derived from the adaxial and 
abaxial leaf reflectance for all the plants
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The Datt index is defined as a ratio of the differ-
ences in reflectance at three wavelengths: 850, 710, and 
680 nm [21]. The reflectance at 850 nm is the minuend 
of the numerator and denominator, and the reflectances 
at 710 and 680 nm are the subtrahend of the numerator 
and denominator, respectively. The 710  nm wavelength 
was used because it is the most sensitive to chlorophyll 
content, 680  nm was used due to its strong chlorophyll 
absorption, and 850 nm was selected as a result of maxi-
mum scattering in the near-infrared wavelengths. How-
ever, why these wavelengths were utilized at the fixed 
position in the formula of the index was not determined. 
The results of this study revealed that it is not always 
certain that the visible wavelengths are required in the 
MDATT index to estimate the LCC when the reflection 
of individual and both surfaces from a variety of plant 
species is considered. The exchangeable λ2 and λ3 also 
showed that the position of each wavelength is not always 
fixed in the MDATT index.

Furthermore, most of the observed relationships 
between MDATT and LCC for single leaf surface 
reflectances were better than for mixed surfaces. It was 
assumed that the reflectance difference between the 
adaxial and abaxial leaf resulted in a worse correlation 
of the spectral index with LCC when the reflectance 
datasets of the two leaf surfaces were combined. Thus, 
although MDATT could remove the structural effect on 
reflectance between the adaxial and abaxial leaf surfaces 
compared with the other spectral indices, the structural 
effects remained partly due to the fact that MDATT was 
based on a semi-empirical reflectance model by Baret 
et al. [50].

The intersected contour map of R2 (Fig.  8) derived 
from the adaxial, abaxial, and both leaf surfaces of each 
plant species provided a robust wavelength region for 
each band applied in the MDATT index. The red-edge 
region and the near-infrared (723–885  nm) for λ1 and 
697–771  nm for λ2 and λ3 were considered to be opti-
mal because any combination of this region would obtain 
a reasonable correlation (R2  >  0.8) with LCC. Thus, the 
robust wavelength region, but not any specific best wave-
length combination, is a good choice for use in MDATT 
in order to obtain a reasonable accuracy for LCC estima-
tion considering adaxial, abaxial, both leaf surfaces, or 
different plant species. Spectral indices based on reflec-
tance in the red-edge region constitute better indicators 
for LCC than other regions, as documented in many 
studies [1, 37, 51], and can be explained by the fact that 
red-edge reflectance is considered to be most closely 
associated with chlorophyll, with very little influence 
from other pigments. Furthermore, the red-edge region 
was optimal for the adaxial, abaxial, and mixed surface 
datasets of each plant species. Additionally, the smallest 

reflectance differences occurred on the red-edge spectral 
region.

It should be noted that the use of robust wavelength 
regions for each band involved in the MDATT index is 
very necessary to make the vegetation index more avail-
able. Different wavelength combinations may be derived 
as the best performed index for specific leaf samples 
from different plant species or growth stages. For exam-
ple, the MDATT index in our previous study to estimate 
LCC was (R719 − R726)/(R719 − R743) for data from both 
leaf surfaces of white poplar and Chinese elm. However, 
when the leaf samples were taken from more plant spe-
cies that experience seasonal changes in their leaves, such 
as in this study, the most effective MDATT index was 
(R721 − R744)/(R721 − R714) with a small wavelength shift 
from the previous one. However, both of them fell into 
the robust wavelength regions found in this study and 
gave reasonable accuracies as shown in Additional file 1: 
Table S1 and Table 2. Thus, the robust wavelength regions 
could provide an optimal MDATT index, although it may 
not always be the best MDATT index.

Incidentally, the NDVI may not be suitable for the case 
in which the adaxial and abaxial leaf surfaces are con-
sidered because the formula cannot remove the effect of 
leaf structures, and the red wavelength in NDVI is not 
included in robust wavelength regions in this study.

Conclusions
Reflectance from adaxial and abaxial leaf surfaces sam-
pled from five woody tree species and two liana species 
obtained during three growing seasons was measured in 
order to determine the correlation between LCC and dif-
ferent spectral indices. The reflectance from the adaxial 
surface was lower than that from the abaxial surface in 
the visible wavelength, but the opposite was observed 
in the near-infrared wavelength for all the plant species 
measured. Very few changes in reflectance were associ-
ated with the red-edge spectral region. The MDATT-for-
matted index was the most effective for estimating LCC, 
regardless of whether the reflectance data was obtained 
from the adaxial or abaxial leaf surfaces or a combina-
tion thereof. MDATT is an optimal index because it can 
remove the effects of the leaf outer surface and internal 
structures when assessing the LCC of several different 
plant species from different seasons. The red-edge to 
near-infrared wavelength (723–885  nm) for λ1, as well 
as the red-edge region (697–771  nm) for λ2 or λ3, con-
stituted robust wavelength regions for constructing the 
MDATT index for estimating LCC because each com-
bination for MDATT in this region was correlated with 
LCC with an R2 higher than 0.8, regardless of the meas-
ured leaf surface or plant species. However, the R2 could 
not reach 0.8 when λ1 equaled λ3 or λ2 equaled λ3.
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