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and plant spacing heterogeneity: application 
to wheat crops
Shouyang Liu1*, Fred Baret1, Denis Allard2, Xiuliang Jin1, Bruno Andrieu3, Philippe Burger4, Matthieu Hemmerlé5 
and Alexis Comar5

Abstract 

Background:  Plant density and its non-uniformity drive the competition among plants as well as with weeds. They 
need thus to be estimated with small uncertainties accuracy. An optimal sampling method is proposed to estimate 
the plant density in wheat crops from plant counting and reach a given precision.

Results:  Three experiments were conducted in 2014 resulting in 14 plots across varied sowing density, cultivars and 
environmental conditions. The coordinates of the plants along the row were measured over RGB high resolution 
images taken from the ground level. Results show that the spacing between consecutive plants along the row direc-
tion are independent and follow a gamma distribution under the varied conditions experienced. A gamma count 
model was then derived to define the optimal sample size required to estimate plant density for a given precision. 
Results suggest that measuring the length of segments containing 90 plants will achieve a precision better than 10%, 
independently from the plant density. This approach appears more efficient than the usual method based on fixed 
length segments where the number of plants are counted: the optimal length for a given precision on the density 
estimation will depend on the actual plant density. The gamma count model parameters may also be used to quan-
tify the heterogeneity of plant spacing along the row by exploiting the variability between replicated samples. Results 
show that to achieve a 10% precision on the estimates of the 2 parameters of the gamma model, 200 elementary 
samples corresponding to the spacing between 2 consecutive plants should be measured.

Conclusions:  This method provides an optimal sampling strategy to estimate the plant density and quantify the 
plant spacing heterogeneity along the row.
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Background
Plant density at emergence is governed by the sowing 
density and the emergence rate. For a given plant den-
sity, the uniformity of plant distribution at emergence 
may significantly impact the competition among plants 
as well as with weeds [1, 2]. Plant density and uniformity 
is therefore a key factor explaining production, although 
a number of species are able to compensate for low plant 
densities by a comparatively significant development 

of individual plants during the growth cycle. For wheat 
crops which are largely cultivated over the globe, tillering 
is one of the main mechanisms used by the plant to adapt 
its development to the available resources that are partly 
controlled by the number of tillers per unit area. The till-
ering coefficient therefore appears as an important trait 
to be measured. It is usually computed as the ratio of the 
number of tillers per unit area divided by the plant den-
sity [3]. Plant density is therefore one of the first variables 
measured commonly in most agronomical trials.

Crops are generally sown in rows approximately evenly 
spaced by seedling devices. Precision seedling systems 
mostly used for crops with plants spaced on the row by 
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more than few centimeters (e.g. maize, sunflower or soy-
bean) distribute seeds relatively evenly along the row. 
Conversely, for most crops with short distances among 
plants on the row, e.g. wheat, barley or canola, seeds are 
distributed non-evenly along the row. This can be attrib-
uted both to the mechanisms that free, at a variable fre-
quency, the seed from the seed tank, and the trajectory 
of the seed that may also vary in the pipe that drives it 
from the seed tank to the soil. Further, once reaching 
the soil, the seed may also move with the soil displaced 
by the sowing elements penetrating the soil surface. 
Finally, some seeds may abort or some young plants 
may die because of pests or too extreme local environ-
mental conditions (excess or deficit of moisture, low 
temperature etc.). The population density and its non-
uniformity are therefore recognized as key traits of inter-
ests to characterize the canopy at the emergence stage. 
However, very little work documents the plant distribu-
tion pattern along the row, which is partly explained by 
the lack of dedicated device for accurate plant position 
measurement [4]. Electromagnetic digitizers are very low 
throughput and not well adapted to such field measure-
ments [5]. Alternatively, algorithms have been developed 
to measure the inter-plant spacing along the row for 
maize crops from top-view RGB (Red Green Blue) images 
[6, 7]. Improvements were then proposed by using three 
dimensional sensors [8–10]. However, these algorithms 
were only validated on maize crops that show relatively 
simple plant architecture with generally fixed inter-plant 
spacing along the row.

Manual field counting in wheat crops is still exten-
sively employed as the reference method. Measurements 
of plant population density should be completed when 
the majority of plants have just emerged and before the 
beginning of tillering when individual plants start to be 
difficult to be identified. Plants are counted over ele-
mentary samples corresponding either to a quadrat or 
to a segment [11]. The elementary samples need to be 
replicated in the plot to provide a more representative 
value [12]. For wheat crops, [3] suggested that at least 
a total of 3 m of rows (0.5 m segment length repeated 6 
times) should be counted, while [13] proposed to sam-
ple a total of 6 m (segments made of 2 consecutive rows 
by one meter repeated 3 times in the plot). [14] pro-
posed to repeat at least 4 times the counting in 0.25 m2 

quadrats corresponding roughly to a total of 6.7 m length 
of rows (assuming the rows are spaced by 0.15  m). In 
this case, quadrats may be considered as a set of con-
secutive row segments with the same length when the 
quadrat is oriented parallel to the row direction or with 
variable lengths when the quadrat is oriented differently. 
Although these recommendations are simple and easy to 
apply, they may not correspond to an optimal sampling 
designed to target a given precision level. They may either 
provide low precision if under sampled or correspond to 
a waste of human resources in the opposite case.

The sample size required to reach a given precision of 
the plant density will depend on the population density 
and the heterogeneity of plant positions along the row 
that may be described by the distribution of the distances 
between consecutive plants. This distribution is more 
likely to be skewed, which could be described by an expo-
nential distribution or a more general one such as the 
Weibull or the gamma distributions. Fitting such random 
distribution functions provides not only access to the 
plant density at the canopy level, but also to its local vari-
ation that may impact the development of neighboring 
plants as discussed earlier.

The objective of this study is to propose an optimal 
sampling method for plant density estimation and to 
quantify the heterogeneity of plant spacing along the row. 
For this purpose, a model is first developed to describe 
the distribution of the plants along the row. The model 
is then calibrated over a number of ground experiments. 
Further, the model is used to compare several plant 
counting strategies and to evaluate the optimal sampling 
size to reach a given precision. Finally, the model was also 
exploited to design a method for quantifying the non-
uniformity of plant distribution.

Methods
Field experiment
Three sites in France were selected in 2014 (Table 1): Avi-
gnon, Toulouse and Grignon. A mechanical seed drill 
was used in the three sites, which represents the stand-
ard practice for wheat crops. In Grignon, five plots were 
sampled, corresponding to different cultivars with a sin-
gle sowing density. In Toulouse, five sowing densities were 
sampled with the same “Apache” cultivar. In Avignon, 
four sowing densities were sampled also with the same 

Table 1  The experimental design in 2014 over the three sites

Sites Latitude Longitude Cultivar Density (seeds m−2)

Toulouse 43.5°N 1.5°E Apache 100, 200, 300, 400, 600

Grignon 48.8°N 1.9°E Premio; Attlass; Flamenko; Midas; Koréli 150

Avignon 43.9°N 4.8°E Apache 100, 200, 300, 400



Page 3 of 11Liu et al. Plant Methods  (2017) 13:38 

“Apache” cultivar. All measurements were taken at around 
1.5 Haun stage [15], when most plants already emerged 
and were easy to identify visually. This stage is reached 
approximately 10–14 days after the germination for wheat 
in France [3]. A total of 14 plots are thus available over the 
3 sites showing contrasted conditions in terms of soil, cli-
mate, cultivars, sowing density and sowing machine, with 
however a fixed row spacing of 17.5 cm. All the plots were 
at least 10 m length and 2 m width.

Image processing
A Sigma SD14 RGB camera with a resolution of 4608 
by 3072 pixels was installed on a light moving platform 
(Fig. 1). The camera was oriented at 45° inclination per-
pendicular to the row direction and was focused on the 
central row from a distance of about 1.5 m (Fig. 1). The 
50 mm focal length allowed to sample about 0.9 m of the 
row with a resolution at the ground level close to 0.2 mm. 
Images were acquired along the row with at least 30% 
overlap to allow stitching. A series of 20 pictures was col-
lected that correspond to three to five rows over about 
5  m length. The images were stitched using AutoStitch 

(http://matthewalunbrown.com/autostitch/autostitch.
html) [16]. For each site, one picture was taken over a 
reference chessboard put on the soil surface to calibrate 
the image: the transformation matrix derived from the 
chessboard image was applied to all the images acquired 
within the same site. It enables to remove perspective 
effects and to scale the pixels projected on the soil sur-
face. The image correction and processing afterwards 
was conducted using MATLAB R2016a (code available 
on request). Coordinates of the plants correspond to the 
intersection between the bottom of the plant and the soil 
surface (Fig.  2). They were interactively extracted from 
the photos displayed on the screen. For each of the 14 
plots, the coordinates of at least 150 successive plants 
from the same row were measured along (X axis) and 
across (Y axis) of the row. It took between 15 to 30 min to 
extract the plant coordinates, depending on the density. 
The precision on the coordinates values along the row is 
around 1.5  mm as estimated by independent replicates 
of the process over the same images. Some slightly larger 
deviations are observed marginally in case of occlusions 
by stones or straw in the field.

The coordinates xn of plant n (noted Plantn) along the 
row axis allow to compute the spacing �xn = (xn − xn−1) 
between Plantn and Plantn−1. The actual plant density 
expressed in plants per square meter horizontal ground 
(plants  m−2) was computed simply as the number of 
plants counted on the segments, divided by the product 
of the length of the segments and the row spacing.

Development and calibration of the plant distribution 
model
Distribution of plant spacing
The autocorrelation technique was used to explore the 
spatial dependency of spacing between successive plants: 
the linear correlation between �xn−m and �xn where m 
is the lag is evaluated. Results illustrated in Fig. 3 over the 

Fig. 1  The moving platform used to take the images in the field in 
2014

Fig. 2  Extraction of plants’ coordinates from the image

http://matthewalunbrown.com/autostitch/autostitch.html
http://matthewalunbrown.com/autostitch/autostitch.html
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Toulouse site show that the autocorrelation coefficient of 
inter-plant distance is not significant at 95% confidence 
interval. The same is observed over the other 13 plots 
acquired. It is therefore concluded that the positions 
among plants along the row direction are independent: 
each observation ∆x could be considered as one inde-
pendent realization of the random variable ∆X.

The distribution of the plant spacing is positively 
right-skewed (Fig.  4). A simple exponential distribu-
tion with only one scale parameter was first tentatively 
fitted to the data using a maximum likelihood method. 
However, the Chi square test at the 5% significance level 
showed that the majority of the 14 plots do not fol-
low this simple exponential distribution law. Weibull 
and gamma distributions are both a generalization of 
the exponential distribution requiring an extra shape 
parameter. Results show that Weibull and gamma dis-
tributions describe well (Chi square test at the 5% sig-
nificance level successful) the empirical distributions 
over the 14 plots (Fig. 4; Table 2). However, the gamma 
distribution will be preferred since it provides generally 
higher p value of Chi square test (Table 2) [17]. Besides, 
the tail of the Weibull distribution tends toward zero 
less rapidly than that of the gamma distribution: 
Weibull may show few samples with very large values 
[18], increasing the risk of overestimation for the larger 
plant spacing. The gamma distribution was therefore 
used in the following and writes [19]:

(1)f
(

�x|a, b
)

=
1

baΓ (a)
�xa−1e

−�x
b �x, a, b ∈ R+

where a and b represent the shape and scale param-
eters respectively. The expectancy E(�X) and variance 
Var(�X) are simple expressions of the two parameters:

As a consequence, the coefficient of variation 
CV(�X) =

√
var(�X)
E(�X)  is a simple function of the shape 

parameter:

Modeling the distribution of the number of plants per row 
segment
The plant density evaluated over row segments needs to 
account for the uncertainties in row spacing. The vari-
ability of the row spacing is of the order of 10  mm as 
reported by [20] which corresponds to CV = 6% using a 
typical row spacing of 175 mm. For the sake of simplic-
ity, the variability of row spacing will be neglected since 
it is likely to be small. Further, it is relatively easy to get 
precise row spacing measurements for each segment 
and to actually account for the actual row spacing val-
ues. Considering a given row spacing, the plant density 
depends only on the number of plants per unit linear row 
length. Estimating the number of plants within a row seg-
ment is a count data problem analogous to the estimation 
of the number of events during a specific time interval 
[19, 21]. Counts are common random variables that are 
assumed to be non-negative integer or continuous values 

(2)E(�X) = a · b

(3)Var(�X) = a · b2

(4)CV(�X) = 1/
√
a

Fig. 3  The autocorrelation of the spacing among plants along the 
row direction illustrated with sowing density of 300 seeds m−2 
observed over the Toulouse experiment. The lag is expressed as the 
number of plant spacing between 2 plants along the row direction 
(X axis). Lags 1–20 are presented. The upper and lower horizontal line 
represent the 95% confidence interval around 0

Fig. 4  Empirical histogram of the spacing along the row (gray bars). 
The solid (respectively dashed) line represents the fitted gamma (resp. 
Weibull) distribution. Case of the sowing density 300 seeds m−2 
observed over the Toulouse experiment. a and b represent the shape 
and scale parameters respectively
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representing the number of times an event occurs within 
a given spatial or temporal domain [22]. The gamma-
count model suits well our problem with intervals inde-
pendently following a gamma distribution as in our case. 
The probability, P{Nl = n}, to get n plants over a segment 
of length l, writes (Eqs. 5–8 were cited from [19, 21]):

where N1 is the number of plants over the segment 
of length l, and IG

(

a · n, l
b

)

 is the incomplete gamma 
function:

where Γ is the gamma Euler function. The expectation 
and variance of the number of plants over a segment of 
length l is given by:

(5)

P{Nl = n}

=







1− IG

�

a, l
b

�

for n = 0
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�

for n = 1, 2, . . .

(6)IG

(

a · n,
l

b
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1

Γ (a · n)

l/b
∫

0

ta·n−1e−tdt

(7)E(Nl) =
∞
∑

n=1
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(
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l
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)

(8)

Var(Nl) =
∞
∑

n=1

(2n− 1)IG

(

a · n,
l

b

)

−

[ ∞
∑

n=1

IG

(
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l

b

)

]2

Finally, the expectation and variance of the plant den-
sity, D1, estimated over a segment of length l can be 
expressed by introducing the row spacing distance, r, 
assumed to be known:

The expectation, E(Dl), converges toward the actual 
density of the population when 1 → ∞.

The transformed gamma-count model allows evaluating 
the uncertainty of plant density estimation as a function 
of the sampling size. The uncertainty can be characterized 
by the coefficient of variation (CV) as follows:

Several combinations of values of a and b may lead to 
the same plant density, but with variations in their dis-
tribution along the row (Fig. 5). The fitting of parameters 
a and b over the 14 plots using the transformed gamma-
count model (Eq.  9) shows that the shape parameter, a, 
varies from 0.96 to 1.39 and is quite stable. Conversely, 
the scale parameter, b, appears to vary widely from 0.96 
to 6.38, mainly controlling the plant density (Fig.  5). 
Since the CV depends only on the shape parameter a 
(Eq. 4), it should not vary much across the 14 plots con-
sidered. This was confirmed by applying a one-way analy-
sis of variance on the CV values of the 14 plots available 
(F  =  1.09, P  =  0.3685): no significant differences are 

(9)E(Dl) =
E(Nl)

l · r

(10)Var(Dl) =
Var(Nl)

(l · r)2

(11)CV(Dl) =
√
Var(Dl)

E(Dl)
=

√
Var(Nl)

E(Nl)

Table 2  Parameters of the fitted distributions

Sites Sowing density 
(seeds m−2)

Cultivar Gamma Weibull

a b p value of Chi 
square test

a b p value of Chi 
square test

Avignon 100 Apache 1.14 6.38 0.27 7.44 1.07 0.29

200 Apache 1.25 4.04 0.62 5.29 1.13 0.05

300 Apache 0.99 2.53 0.38 2.51 1.00 0.56

400 Apache 0.96 1.50 0.22 1.39 0.94 0.57

Toulouse 100 Apache 1.07 5.01 0.12 5.32 0.99 0.10

200 Apache 1.39 1.95 0.17 2.86 1.15 0.12

300 Apache 1.21 2.28 0.94 2.89 1.12 0.94

400 Apache 1.24 1.37 0.51 1.76 1.10 0.40

600 Apache 1.16 0.96 0.37 1.14 1.09 0.21

Grignon 150 Premio 1.12 3.37 0.70 3.85 1.06 0.68

150 Attlass 1.13 2.48 0.69 2.87 1.05 0.67

150 Flamenko 1.11 3.3 0.92 3.75 1.05 0.92

150 Midas 1.24 3.03 0.21 3.92 1.12 0.24

150 Koréli 1.15 2.89 0.24 3.48 1.15 0.18
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observed. This result may be partly explained by the fact 
that the same type of seed drill was used for all the three 
sites.

Results
Optimal sample size to reach a given precision for plant 
density estimation
The transformed gamma-count model provides a con-
venient way to investigate the effect of the sampling size 

on the precision of the density estimates. The precision 
will be quantified here using the coefficient of varia-
tion (CV). The sample size can be expressed either as a 
given length of the segments where the (variable) num-
ber of plants should be counted, or as a (variable) length 
of the segment to be measured corresponding to a given 
number of consecutive plants. The two alternative sam-
pling approaches will be termed FLS (Fixed Length of 
Segments) for the first one, and FNP (Fixed Number of 
Plants) for the second one.

When considering the FLS approach, the sample size is 
defined by the length of segment, L, where plants need to 
be counted. The optimal L value for a given target preci-
sion quantified by the CV will mainly depend on the cur-
rent density as demonstrated in Fig. 6a: longer segments 
are required for the low densities. Conversely, shorter 
segments are needed for high values of the plant density 
to reach the same precision. The scale parameter, b, that 
controls the plant density drives therefore the optimal 
segment length L (Fig. 6a). Counting plants over L = 5 m 
(500  cm) provides a precision better than 10% for den-
sities larger than 150 plants·m−2 for the most common 
conditions characterized by a shape coefficient a  >  0.9. 
These figures agree well with the usual practice for plant 
counting as reviewed in the introduction [3, 13, 14]. 
Increasing the precision quantified by the CV will require 
longer segments L to be sampled (Fig. 7a).

When considering the FNP approach, the sample 
size is driven by the number, N, of consecutive plants 
that defines to a row segment whose length need to be 

Fig. 5  Relationship between parameters a and b of the gamma-
count model for a range of plant density (from Eqs. 6, 7, 9). The lines 
correspond to, 100, 150, 200, 300, 400 and 600 plants m−2. The dots’ 
color corresponds to the experimental sites

Fig. 6  a The optimal sampling size length (the horizontal solid lines, the length being indicated in cm) used in the FLS approach as a function of 
parameters a and b to get CV = 10% for the density estimation. b Idem as on the left but the sample is defined by the number of plants to be 
counted (the vertical solid lines with number of plants indicated) for the FNP approach. The gray dashed lines correspond to the actual plant density 
depending also on parameters a and b. The row spacing is assumed perfectly known and equal to 17.5 cm. The gray points represent the 14 plots 
measured
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measured. The simulations of the model (Fig.  6b) show 
that N is mainly independent from the plant density. 
For the 14 plots considered in this study, segments with 
70 < N < 110 plants should be measured to reach a pre-
cision of CV =  10%. The shape parameter a influences 
dominantly the sample size: more heterogeneous dis-
tribution of plants characterized by small values of the 
shape parameter will require more plants to be counted 
(Fig.  6b). To increase the precision (lower CV), more 
plants will also need to be counted (Fig. 7b).

The sampling approach FLS (Fixed Length of segments) 
is extensively used to estimate the plant density. The 
600 cm segment length recommended by [13, 14] agrees 
well with our results (Figs.  6a, 7a) demonstrating that a 
precision better than 10% is ensured over large range of 
densities and non-uniformities. The optimal sampling 
length (FSL) and optimal number of plants sampled 
(FNP) was computed for other precision levels for a range 
of plant densities (Table  3). Results show that the FNP 

method provides very stable values of the sampling size: 
it is easy to propose an optimal number of consecutive 
plants to count to reach a given precision. Conversely, the 
optimal length of the segment used in the FSL approach 
varies strongly with the plant density (Table 3): the FLS 
approach when applied with a segment length chosen a 
priori without knowing the plant density will result in a 
variable precision level.

Sampling strategy to quantify plant spacing variability 
on the row
The previous sections demonstrated that the scale and 
shape parameters could be estimated from the observed 
distribution of the plant spacing. However, the measure-
ment of individual plant spacing is tedious and prone to 
errors as outlined earlier. The estimation of these param-
eters from the variability observed between small row 
segments containing a fixed number of plants will there-
fore be investigated here. This FNP approach is preferred 

Fig. 7  The optimal sampling length for the FLS approach (a) and the number of plants for the FNP approach (b). The dominant parameter is used 
(the scale parameter for FLS and the shape coefficient for FNP). The precision is evaluated with the CV = 5, 10, 15 and 20%

Table 3  Optimal sampling size for  FSL and  FNP over  different densities (100, 150, 200, 300, 400 and  600 seeds  m−2) 
and precisions (5, 10 and 15%)

This was calculated using the average values of the parameters a and b of the gamma distribution derived for each density over the 14 plots available

Sowing density (seeds m−2) Parameters CV = 5% CV = 10% CV = 15%

a b FSL (cm) FNP (Nb. Plt) FSL (cm) FNP (Nb. Plt) FSL (cm) FNP (Nb. Plt)

100 1.11 5.70 2478 363 620 90 250 39

150 1.15 3.01 1406 348 351 88 130 37

200 1.32 3.00 1398 308 350 78 130 33

300 1.10 2.41 1162 363 291 90 110 39

400 1.10 1.44 774 363 194 90 60 39

600 1.16 0.96 584 348 146 85 50 37
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here to the FSL one because there will be no additional 
uncertainties introduced by the position of the first and 
last plants of the segment with the corresponding start 
and end of the segment. These uncertainties may be sig-
nificant in case of small segments in the FLS approach.

The probability distribution of a gamma distribution 
can be expressed as the sum of an arbitrary number of 
independent individual gamma distributions [23]. This 
property allows to compute the distribution of a segment 
of length Ln corresponding to n plant spacing between 
(n  +  1) consecutive plants with Ln =

∑n
i=1�xi, as a 

gamma distribution with n  · a as shape parameter and 
the same scale parameter b as the one describing the dis-
tribution of ∆X.

The parameters a and b will therefore be estimated by 
adjusting the gamma model described in Eq.  12 for the 
given value of n + 1 consecutive plants.

The effect of the sampling size on the precision of a 
and b parameters estimation was further investigated. A 
numerical experiment based on a Monte-Carlo approach 
was conducted considering a standard case correspond-
ing to the average of the 14 plots sampled in 2014 with 
a =  1.10 and b =  2.27. The sampling size is defined by 
the number of consecutive plants for the FNP approach 
considered here and by the number of replicates. For 
each sampling size 300 samples were generated by ran-
domly drawing in the gamma distribution (Eq.  12) and 
parameters a and b were estimated. The standard devi-
ation between the 300 estimates of a and b parameters 
was finally used to compute the corresponding CV. This 
process was applied to a number of replicates varying 
between 20 to 300 by steps of 10 and a number of plants 
per segment varying between 2 (i.e. spacing between two 
consecutive plants) to 250 within 12 steps. This allows 
describing the variation of the coefficient of estimated 
values of parameters a and b as a function of the number 
of replicates and the number of plants (Fig. 8).

Results show that the sensitivity of the CV of estimates 
of parameters a and b are very similar (Fig. 8). The sensi-
tivity of parameters a and b is dominated by the number 
of replicates: very little variation of CV is observed when 
the number of plants per segment varies (Fig. 8). Param-
eters a and b require about 200 replicates independently 
from the number of plants per segment. It seems there-
fore more interesting to make very small segments to 
decrease the total number of plants to count.

Additional investigations not shown here for the sake 
of brevity, confirmed the independency of the number 
of replicates to the number of plants per segment when 
parameters a and b are varying. Further, the number of 
replicates need to be increased as expected when the 

(12)Ln ∼ Gamma(n · a, b)

shape parameter a decreases (i.e. when the plant spacing 
is more variable) to keep the same precision on estimates 
of a and b parameters.

Discussion and conclusions
A method was proposed to estimate plant density and 
sowing pattern from high resolution RGB images taken 
from the ground. The method appears to be much more 
comfortable as compared with the standard outdoor 
methods based on plant counting in the field. Images 
should ideally be taken around Haun stage 1.5 for wheat 
crops when most plants have already emerged and tiller-
ing has not yet started. Great attention should be paid to 
the geometric correction in order to get accurate ortho-
images where distances can be measured accurately. The 
processing of images here was automatic except the last 
step corresponding to the interactive visual extraction 
of the plants’ coordinates in the image. However, recent 
work [24, 25] suggests that it will be possible to automa-
tize this last step to get a fully high-throughput method.

The method proposed is based on the modeling of 
the plant distribution along the row. It was first dem-
onstrated that the plant spacing between consecutive 
plants are independent which corresponds to a very 
useful simplifying assumption. The distribution of plant 
spacing was then proved to follow a gamma distribution. 
Although the Weibull distribution showed similar good 
performance, it was not selected because of the com-
paratively heavier tails of the distribution that may cre-
ate artefacts. Further the Weibull model does not allow 
to simply derive the distribution law of the length of 

Fig. 8  Contour plot of the CV associated to the estimates of param-
eters a (solid line) and b (dashed line) as a function of the number of 
replicates of individual samples made of n plants (the y axis). The solid 
(respectively dashed) isolines correspond to the CV of parameter a 
(respectively parameter b). These simulations were conducted with [a, 
b] = [1.10, 2.27]
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segments containing several consecutive plants [26]. The 
gamma model needs a scale parameter that drives mostly 
the intensity of the process, i.e. the plant density, and a 
shape parameter that governs the heterogeneity of plant 
spacing. This model was transformed into a count data 
model to investigate the optimal sampling required to get 
an estimate of plant density for a given precision level.

The adjustment of the gamma-count model on the 
measured plant spacing using a maximum likelihood 
method provides an estimate of the plant density (Eq. 9). 
The comparison to the actual plant density (Fig. 9) sim-
ply computed as the number of plants per segment 
divided by the area of the segments (segment length by 
row spacing), shows a good agreement, with RMSE ≈ 50 
plants  m−2 over the 14 plots available. The model per-
forms better for the low density with a RMSE of 21 
plants m−2 for density lower than 400 plants m−2. These 
discrepancies may be mainly explained by the accuracy 
in the measurement of the position of individual plants 
(around 1–2  mm). Uncertainties on individual plant 
spacing will be high in relative values as compared to 
that associated with the measurement of the length of the 
segment used in the simple method to get the ‘reference’ 
plant density. Hence it is obviously even more difficult to 
get a good accuracy in plant spacing measurements for 
high density, i.e. with a small distance among plants. In 
addition, small deviations from the gamma-count model 
are still possible, although the previous results were 
showing very good performance.

The model proposed here concerns mainly relatively 
nominal sowing, i.e. when the sowing was successful 
on average on the row segments considered: portions 
of rows with no plants due to sowing problems or local 
damaging conditions (pests, temperature and moisture). 
The sowing was considered as nominal on most of the 

plots investigated in this study, with no obvious ‘acci-
dents’. However, it is possible to automatically identify 
from the images the unusual row segments with missing 
plants or excessive concentration of plants [25]. Rather 
than describing blindly the bulk plant density, it would 
be then preferred to get a nested sampling strategy: the 
unusual segments could be mapped extensively, and the 
plant density of nominal and unusual segments could 
be described separately using the optimal sampling pro-
posed here.

This study investigated the sampling strategy to esti-
mate the plant density with emphasis on the variability of 
plant spacing along the row, corresponding to the sam-
pling error. However additional sources of error should 
be accounted for including measurement biases, uncer-
tainties in row spacing or non-randomness in the sample 
selection [27– 29]. Unlike sampling error, it could not be 
minimized by increasing sampling size. The non-sam-
pling error may be reduced by combining a random sam-
pling selection procedure with a measurement method 
ensuring high accuracy including accounting for the 
actual values of the row spacing measured over each seg-
ment [30].

Optimal sampling requires a tradeoff between mini-
mum sampling error obtained with maximum sampling 
size and minimum cost obtained with minimum sam-
pling size [31]. The optimal sampling strategy should 
first be designed according to the precision targeted 
here quantified by the coefficient of variation (CV) char-
acterizing the relative variability of the estimated plant 
density between several replicates of the sampling pro-
cedure. The term ‘optimal’ should therefore be under-
stood as the minimum sampling effort to be spent to 
achieve the targeted precision. Two approaches were 
proposed: the first one considers a fixed segment length 
(FSL) over which the plants have to be counted; the sec-
ond one considers a fixed number of successive plants 
(FNP) defining a row segment, the length of which needs 
to be measured. The first method (FLS) is the one gener-
ally applied within most field experiments. However, we 
demonstrated that it is generally sub-optimal: since the 
segment length required to achieve a given CV depends 
mainly on the actual plant density: the sampling will 
be either too large for the targeted precision, or con-
versely too small, leading to possible degradation of the 
precision of plant density estimates. Nevertheless, for 
the plant density (>100 plants  m−2) and shape param-
eter (a  >  0.9) usually experienced, a segment length of 
6 m will ensure a precision better than 10%. The second 
approach (FNP) appears generally more optimal: it aims 
at measuring the length of the segment corresponding to 
a number of consecutive plants that will depend mainly 
on the targeted precision. Results demonstrate that in 

Fig. 9  Comparison between the actual density and that estimated 
from the gamma-count model
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our conditions, the density should be evaluated over seg-
ments containing 90 plants to achieve a 10% precision. 
The sampling size will always be close to optimal as com-
pared to the first approach where optimality requires the 
knowledge of the plant density that is to be estimated. 
Further, the FNP approach is probably more easy to 
implement with higher reliability: as a matter of facts, 
measuring the length of a segment defined by plants at 
its two extremities is easier than counting the number of 
plants in a fixed length segment, where the extremities 
could be in the vicinity of a plant and its inclusion or not 
in the counting could be prone to interpretation biases 
by the operator. The total number of plants required 
in a segment could be split into subsamples containing 
smaller number of plants that will be replicated to get 
the total number of plants targeted. This will improve 
the spatial representativeness. Overall, the method pro-
posed meets the requirements defined by [32, 33] for 
the next genearation of phenotyping tools: increase the 
accuracy, the precision and the throughput while reduc-
ing the labor and budgetary costs.

The gamma-count model proved to be well suited to 
describe the plant spacing distribution along the row 
over our contrasted experimental situations. It can thus 
be used to describe the heterogeneity of plant spacing 
as suggested by [20]. This may be applied for detailed 
canopy architecture studies or to quantify the impact of 
the sowing pattern heterogeneity on inter-plant com-
petition [1, 2]. The heterogeneity of plant spacing may 
be described by the scale and shape parameters of the 
gamma model. Quantification of the heterogeneity of 
plant spacing requires repeated measurements over seg-
ments defined by a fixed number of plants. Our results 
clearly show that the precision on estimates of the 
gamma count parameters depends only marginally on 
the number of plants in each segment. Conversely, it 
depends mainly on the number of segments (replicates) 
to be measured. For the standard conditions experienced 
in this study, the optimal sampling strategy to get a CV 
lower than 10% on the two parameters of the gamma dis-
tribution would be to repeat 200 times the measurement 
of plant spacing between 2 consecutive plants.
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