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Abstract 

Background:  Modern agriculture uses hyperspectral cameras to obtain hundreds of reflectance data measured at 
discrete narrow bands to cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra, 
depending on the camera. This information is used to construct vegetation indices (VI) (e.g., green normalized dif‑
ference vegetation index or GNDVI, simple ratio or SRa, etc.) which are used for the prediction of primary traits (e.g., 
biomass). However, these indices only use some bands and are cultivar-specific; therefore they lose considerable 
information and are not robust for all cultivars.

Results:  This study proposes models that use all available bands as predictors to increase prediction accuracy; we 
compared these approaches with eight conventional vegetation indexes (VIs) constructed using only some bands. 
The data set we used comes from CIMMYT’s global wheat program and comprises 1170 genotypes evaluated for 
grain yield (ton/ha) in five environments (Drought, Irrigated, EarlyHeat, Melgas and Reduced Irrigated); the reflectance 
data were measured in 250 discrete narrow bands ranging between 392 and 851 nm. The proposed models for the 
simultaneous analysis of all the bands were ordinal least square (OLS), Bayes B, principal components with Bayes B, 
functional B-spline, functional Fourier and functional partial least square. The results of these models were compared 
with the OLS performed using as predictors each of the eight VIs individually and combined.

Conclusions:  We found that using all bands simultaneously increased prediction accuracy more than using VI alone. 
The Splines and Fourier models had the best prediction accuracy for each of the nine time-points under study. Com‑
bining image data collected at different time-points led to a small increase in prediction accuracy relative to models 
that use data from a single time-point. Also, using bands with heritabilities larger than 0.5 only in Drought as predictor 
variables showed improvements in prediction accuracy.

Keywords:  Spectral data, Vegetation indexes, Prediction accuracy, Genome selection, Bayes B, Spline regression, 
Fourier regression, Wheat
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Background
Plant breeding programs routinely perform early field 
evaluations of large numbers of candidates for selection 
based not only on the main primary trait—grain yield 
measured in different environments—but also on several 

secondary traits related to yield, such as disease resist-
ance. Methods that could help breeders measure grain 
yield based on other secondary traits in the early stages 
of plant growth could be of value to help reduce evalua-
tion time and cost [25]. In recent years, the use of remote 
or proximal sensing, hyperspectral imaging, and laser 
scanners has helped develop low-cost, efficient high-
throughput phenotyping platforms (HTPP) [1] which aim 
to collect data at low cost on many phenotypes of large 
numbers of breeding individuals at different stages of 
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plant growth under different environmental conditions. 
This could drastically increase the number of traits that 
can be quantified on field-grown plants, selection inten-
sity, prediction accuracy, and, therefore, the response to 
selection [25].

The basis of remote sensing and spectral science is 
the ability to measure electromagnetic energy at vary-
ing wavelengths that interact with different parts of the 
growing plant. The goal of spectral science is to meas-
ure a phenotype quantitatively through the interaction 
between light and plants, such as reflected, absorbed, 
transmitted and/or emitted photons. This is possible 
because each component of plant cells and tissues has 
wavelength-specific absorbance, reflectance and trans-
mittance properties [16]. For example, a healthy plant 
interacts (absorbs, reflects, emits, transmits and fluo-
resces) with electromagnetic radiation in a different way 
than an infected plant [16].

In practical applications of HTPP to agriculture, the 
reflectance of electromagnetic energy at different wave-
length bands is usually summarized in scores of spectral 
vegetative indices (VI) that are further used to predict 
plant physiological issues or agronomic traits. Spectral 
VI are a simple and convenient way of extracting infor-
mation from remotely sensed data that facilitates the pro-
cessing and analysis of large amounts of data acquired by 
modern cameras and satellite platforms [13, 18]. Signifi-
cant advances have been achieved in understanding the 
nature and proper interpretation of spectral VI [18, 21] 
and theoretical frameworks have been proposed to sup-
port the development of indices optimized for particular 
applications. Popular VIs are the Normalized Difference 
Vegetation Index (NDVI), the Canopy Water Mass Index 
[30] and the Modified Normalized Difference at 705 nm 
wavelength (mND; e.g., [26]). Vegetative indices have 
been applied successfully in some crops [3–9, 31]. For 
example, the canopy temperature (CT) and NDVI indi-
ces have been applied to estimate yield, taking advantage 
of the correlation between yield and these two VIs [2, 15, 
17, 22]. Also, it has been documented that the air-canopy 
temperature difference index can be used as a selection 
criterion in wheat (Triticum aestivum L.) breeding pro-
grams to estimate yield [24]. The NDVI has also been 
used successfully to estimate wheat yield before harvest 
at the regional and farm scale [15].

Although several spectral VIs are positively correlated 
with grain yield and other important agronomic and 
physiological traits, they do not consider all the spectral 
bands from the hyperspectral sensors [28, 29]. Neverthe-
less, cameras with high spectral resolution can produce 
data on hundreds of spectral bands that can be fur-
ther used to capture a wide range of information. Also, 

despite some successful applications of spectral VIs, most 
of these indices tend to be species-specific and, therefore, 
are not robust when applied across different species that 
have different canopy architectures and leaf structures 
because they use only a fraction of the available informa-
tion on the measured wavelengths.

The important idea is that for sensor data to be mean-
ingful, algorithms need to be developed to interpret the 
data and extract the most useful information to be trans-
lated into important traits for plant breeding. Thus, the 
use of high-resolution images is important to develop 
prediction models for grain yield, yield components, and 
relevant physiological and agronomical traits. However, 
the enormous volume, variety, and velocity of HTPP data 
generated by such platforms make it a ‘big data’ prob-
lem. Big data generated by these near real-time platforms 
must be efficiently archived and retrieved for analysis 
[27]. The analysis and interpretation of these large data-
sets is quite challenging, although several authors have 
proposed using sensor data through a linear regression 
based on standard ordinary least squares [29]. To over-
come collinearity among predictors (bands from the 
sensor), Hernandez et  al. [14] concluded that penalized 
ridge regression models from spectral reflectance data at 
anthesis or grain-filling predict grain yield well under dif-
ferent water levels. Recently, Ferragina et al. [12] proved 
that high-dimensional Bayesian regression models (simi-
lar to those used in genomic selection for predicting the 
performance of unobserved individuals based on a large 
number of markers) can be used to derive functions of 
hundreds of wavelengths. However, no Bayesian regres-
sion models or other functional regression models that 
define the function of wavelength for the prediction of 
grain yield and other traits in different environmental 
conditions have been studied in plant breeding [6].

Based on the above considerations, the main objec-
tives of this study are: (1) to compare prediction accuracy 
of eight conventional spectral VIs (see Table  1) versus 
seven models that include ordinary least squared regres-
sions for each spectral VI and all spectral VIs combined, 
Bayes B with all bands, Principal Components (PC) Bayes 
B regression, and three functional regression models, 
spline regression, Fourier regression and Partial Least 
Regression (PLS); (2) to identify the best models in terms 
of prediction accuracy; and (3) to identify time-points of 
plant growth before harvesting from which accurate pre-
dictions for wheat grain yield can be obtained. We illus-
trate the use of the different methods and models with 
data on grain yield collected on 1170 CIMMYT wheat 
lines evaluated in five contrasting environments. A total 
of 250 wavelengths were used on nine different time data 
points of crop growth.
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Methods
Data
All 1170 lines were evaluated in all environments 
[Drought (severe drought), EarlyHeat (irrigated early 
planting for heat at sowing), Irrigated (irrigated bed 
planting), Melgas (irrigated flat planting) and Reduced 
Irrigated (moderate drought)]. In each environment, the 
lines were included in 39 trials, each comprising 30 lines; 
in each trial, the lines were studied using an alpha-lattice 
design with three replicates and six experimental blocks. 
The planting dates were all in 2013 as follows: Early-
Heat on October 30, Irrigated and Reduced Irrigated on 
November 21, Drought on November 26 and Melgas on 
December the 1st. The traits measured on each line were 
grain yield (GY) and days to heading (DH), but only GY 
was analyzed in this study.

The image data was obtained using a Piper PA-16 Clip-
per flight that was fitted with a Hyperspectral camera 
(Model: A-series, Micro-Hyperspec Airborne sensor, 
VNIR Headwall Photonics, www.headwallphotonics.
com, Fitchburg, Massachusetts, US) and thermal camera 
(A600 series Infrared camera, FLIR, www.flir.com, Bos-
ton, US). The plane flew at 270 m above the surface.

The aerial high throughput phenotyping (HTP) data 
was measured around solar noon time every date, align-
ing the plane to the solar azimuth for the data acquisi-
tion. Images of the experimental fields were obtained and 
formatted to tabular data by calculating the mean value 
of the pixels inside the center of each individual trial plot 
represented as a polygon area on a map. The software 
used to achieve this was ArcMap (ESRI, USA, CA).

On the data processing, the 38  cm per pixel CT data 
was corrected with a linear calibration of slope 1.2253 
and Y intercept −6767.9 with the software ImapQ 
(Alava Ingenieros, Madrid, Spain). The several indi-
vidual images of each flight were used to compose a 

unique mosaic per date with the software Autopano Giga 
(Kolor SARL, France). Then they were manually georef-
erenced using ArcMap (ESRI, USA, CA). The original 
image data is stored in kelvin units ×100, the next for-
mula was applied with ENVI software (Excelis VIS, USA, 
CO) to convert the pixel values to Celsius degrees: (Pixel 
value)/100 − 273.15.

As well, the 30  cm per pixel hyperspectral data was 
processed with the software HyproQ (Alava Ingenieros, 
Madrid, Spain). First the images had a radiometric cali-
bration with coefficients provided by the Laboratory for 
Research Methods in Quantitative Remote Sensing of the 
Consejo Superior de Investigaciones Científicas (Quan-
taLab, IAS-CSIC, Spain) derived with a calibrated uni-
form light source; additionally the dark frame subtraction 
was performed to reduce the noise of the sensor. Correc-
tions to decrease the effects of the atmosphere conditions 
in the images was performed modeling irradiance based 
on sun-photometer field measurements (Microtops II, 
Solar Light Company, PA, USA). The images were ortho-
rectified and coarsely georeferenced based on the built-
in Inertial Navigation System (INS/GPS). For the data 
extraction, where the image did not overlay the plots 
polygons because of INS inaccuracy, they were manually 
aligned to it in ArcMap.

The bands were measured on nine different dates (Janu-
ary 10, 2015; January 17, 2015; January 30, 2015; February 
7, 2015; February 14, 2015; February 19, 2015; February 
27, 2015; March 11, 2015; and March 17, 2015; which we 
called time-points 1, 2, 3,…, 9, respectively) using 250 
discrete narrow wavelengths. In each plot, 250 wave-
lengths λ1, … λ250 from 392.03 to 850.69 nm were meas-
ured for each wheat line. The ith discretized spectrometic 
curve is given by x1(λ1), …, xn(λ250). We used the nota-
tion x(780) without subscripts to denote the response 
of the band measured at a wavelength of 780 nm, x(670) 

Table 1  Spectral reflectance indices

Index types: VI vegetation index, PI pigmented related index [19]

Index Name Physiological process Type Calculation

RNDVI Red normalized difference vegetation index Green area, photosynthetic capacity, N status VI [x(780) − x(670)]/[x(780) + x(670)]

GNDVI Green normalized difference vegetation index Green area, photosynthetic capacity, N status VI [x(780) − x(550)]/[x(780) + x(550)]/

SRa Simple ratio Green biomass VI [x(800)/]/[x(680)] and [x(900)]/[x(680)]

RARSa Ratio analysis of reflectance spectra chloro‑
phyll a

Chlorophyll a content PI [x(675)]/[x(700)]

RARSb Ratio analysis of reflectance spectra chloro‑
phyll b

Chlorophyll b content PI [x(675)]/[x(650) × x(700)]

RARSc Ratio analysis of reflectance spectra chloro‑
phyll c

Chlorophyll c content PI [x(760)]/[x(500)]

NPQI Normalized pheophytinization index Normal chlorophyll degradation; can be used 
to estimate phenology, pest and diseases

PI [x(415) − x(435)]/[x(415) + x(435)]

PRI Photochemical reflectance index Dissipation of excess radiation PI [x(531) − x(570)]/[x(531) + x(570)]

http://www.headwallphotonics.com
http://www.headwallphotonics.com
http://www.flir.com
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to denote the response of the band measured at a wave-
length of 670 nm, and so on.

Note that early heat trial was planted in average 
26  days earlier than the other trials; therefore, com-
parisons between individual time-points between heat 
trial and the others environments should consider data 
on the number of weeks since sowing. The comparison 
between the environments except early heat trial can be 
done more less fairly since the heading date ranged from 
77 to 82 days after sowing, a period of five days in aver-
age. In all the environments heading date happened after 
the time-point four except in the Melgas environment 
in which heading date occurred at the same moment of 
time-point six.

Definition and computation of spectral vegetation indices
Eight different VIs were constructed with the 250 bands 
and are described in Table 1.

Statistical methods
Adjusting the original data set
The lines were evaluated using an alpha-lattice design 
with three replicates and six incomplete blocks each, 
with five wheat lines randomly distributed within the 
incomplete block. This alpha-lattice design was estab-
lished for each of the five environments. First, the design 
effect was removed in each environment and the BLUPs 
(Best Linear Unbiased Predictor) of genotypes for GY, for 
each of the 250 wavelengths and for each of the eight VIs 
were obtained in each of the nine time-points using the 
following model

where μ is the overall mean,yijkl is the response variable 
(GY, wavelength measure and VIs) for the ith genotype, 
jth trial, kth replicate, and lth block, gi is the random 
genetic effect of genotype i with normal distribution 
N
(

0, σ2g

)

, tj is the random effect of trial j with normal dis-
tribution N

(

0, σ2t

)

, rk(j) is the random effect of replicate 
k nested within trial j with normal distribution N

(

0, σ2r

)

, 
bl(k,j) is the random effect of the incomplete block l nested 
within replicate k and trial j with normal distribution 
N
(

0, σ2b

)

, and ǫijkl is the residual effect with normal dis-
tribution N

(

0, σ2e

)

. After these pre-adjustments in each 
environment, we obtained BLUPs for each of the 1170 
genotypes for GY, for each of the 250 bands and for each 
of the eight VIs. The BLUPs of genotypes were obtained 
for each of the nine time-points under study. Also, from 
fitting the alpha-lattice experimental model expressed 
above, we used the variance components of genotypes 
and of the error term to calculate the broad-sense her-

itability using the expression H2 =
σ
2
g

σ
2
g+σ

2
e
 [10]; this was 

yijkl = µ+ gi + tj + rk(j) + bl(k ,j) + ǫijkl ,

calculated for each of the 250 bands in each time-point in 
each environment.

Proposed single time‑point models for the adjusted data
With the pre-adjusted data (BLUPs of genotypes for GY, 
for each of the 250 bands and the eight VIs), we propose 
to evaluate prediction accuracy for each time-point using 
the following statistical models:

Model 1 Index ordinal least square (OLS) regression: 
yi = µ+ zimαm + ǫi,
Model 2 Joint index OLS regression: yi = µ+
∑8

m=1 zimδm + ǫi,
Model 3 All bands Bayes B regression: yi = µ+
∑250

k=1 xikβk + ǫi,
Model 4 PC Bayes B regression: yi = µ+

∑NPC
l=1

PCilγk + ǫi,
Model 5 All bands functional B-spline regression: 
yi = µ+

∫

xi(k)β1(k)dk + ǫi,
Model 6 All bands functional Fourier regression: 
yi = µ+

∫

xi(k)β2(k)dk + ǫi,
Model 7 All bands functional PLS regression: yi = µ+
∫

xi(k)β3(k)dk + ǫi,

where i  =  1,  …,  n, with n = 1170, k = 1, . . . ,K  with 
K = 250,NPC denotes the number of principal compo-
nents (PC) used and we used 6 (5, 10, 20, 35, 45 and 55). 
xik represents reflectance at the kth band collected in the 
ith genotype, PCil are the loadings of the lth PC on the 
ith genotype derived from the spectra data collected, zim 
is the mth index (RNDVI, GNDVI, SRa, RARSa, RARSb, 
RARSc, NPQI and PRI) derived from data collected at 
the ith genotype, while xi(k) is the functional predictor 
collected at the ith genotype and its corresponding func-
tional data set is the sample [x1(k), . . . , xn(k)]. The error 
terms ǫi were assumed to be independent with null mean 
and variance σE

2. αm, δm, βk, γk, are the regression coeffi-
cients for models 1, 2, 3 and 4, respectively, while β1(k), 
β2(k),β3(k) are the coefficient functions for functional 
models 5, 6 and 7, respectively.

The three proposed functional regression models 
(Models 5, 6 and 7) are the most popular functional 
regression models, where the responses are scalars and 
the covariates are functions. For this reason, the response 
variable (yi) is a scalar in all the proposed models and 
represents grain yield (GY). Also, the difference between 
Models 5, 6 and 7 is the basis used for representing βo(k), 
with o =  1,  2,  3. Here a basis is understood to be a set 
of standard functions (φw)w∈N that are used to approxi-
mate any function of interest by a linear combination of 
a sufficiently large rw of these functions [23]. In Model 6, 
we assumed the B-spline basis; in Model 7, we used the 
Fourier basis; and in Model 8, the basis is the PLS. More 
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details on the theory behind Models 5, 6, and 7 and their 
basis can be found in Ramsay and Silverman [23].

The parameter estimation of Models 1 and 2 was per-
formed using OLS and implemented in the R software 
with the function lm() of the library MAS, while for 
Models 3 and 4, a Bayesian shrinkage-variable selection 
procedure (called Bayes B method) using a prior with a 
point of mass at zero and a t-slab was implemented in the 
BGLR R-package [20]. The functional models (Models 5, 
6 and 7) were estimated with OLS and implemented in 
the R-package fda.usc [11] with 21 basis. First, models 
were fitted to the entire data set to evaluate goodness-
of-fit to the training data and were then implemented 
through the cross-validation described in the next sec-
tion. Using these 7 models, we created 19 methods 
(described in Table 2) according to the type of data they 
were applied to. The 19 methods were implemented in 
each of the five environments and per time-point.

It is important to point out that methods M1–M8 used 
only one of the 8 VIs, M9 used all 8 VIs simultaneously, 
M10–M19 used all 250 bands, but methods M11–M16 
used all bands to perform a principal component analy-
sis and then used different numbers of principal com-
ponents (5, 10, 20, 35, 45, 55 PCs), as shown in Table 2. 
Additionally, methods M17 and M18 were implemented 
with only those bands whose heritability is >0.5.

Assessing prediction accuracy
For the prediction accuracies of the 19 proposed methods 
presented in Table  2, we implemented a ten-fold cross-
validation—with 1053 (90%) lines for training and 117 
(10%) for testing in each fold—that was assessed by the 
Pearson correlation between the observed BLUPs of GY 

and their predicted values using the testing data set. We 
reported the average of the ten-fold cross-validation of 
the Pearson correlation (APC) as measure of prediction 
accuracy as well as the quantiles 2.5 (LL) and 97.5% (UL) 
(see “Appendices 1, 2”). It is important to point out that we 
used the same Split (of the ten-fold cross-validation) in the 
19 methods to ensure fair comparisons between methods.

Results
The results are given in two sections: the first section pre-
sents the heritability estimates of each of the 250 wave-
lengths for each environment, while the second section 
presents the prediction accuracies estimated under the 
implemented methods.

Heritability estimates
The highest heritability estimates were found in the Irri-
gated (Fig. 1b) and EarlyHeat (Fig. 1c) environments, with 
values between 0.6 and 0.8 for most of the time-points. 
In these environments, heritability estimates are quite 
homogeneous across wavelengths, although in Irrigated, 
the lowest heritabilities were higher than 0.4 and were 
observed for wavelengths before 570 nm and those in the 
580–700  nm range, while in EarlyHeat, the wavelengths 
with the lowest heritability were found before wavelengths 
of 480 nm and between wavelengths of 680–730 nm and 
all were higher than 0.4. On the other hand, the environ-
ment with the lowest heritability was Drought (Fig.  1b); 
the heritability before 450  nm and those in the 600–
700  nm range are very low (around 0.2), while the rest 
of the bands with the highest heritability show values of 
around 0.6. The rest of the environments [Melgas (Fig. 1d) 
and Reduced Irrigated (Fig. 9; “Appendix 3”)] have inter-
mediate heritability although they are very heterogene-
ous between time-points and across bands. For example, 
in the Melgas environment, we observed heterogeneity of 
heritabilities between time-points and across wavelengths 
and for wavelengths >750  nm for all time-points. While 
in Reduced Irrigated, the lowest heritabities (around 0.3) 
were observed in the 590–700 nm wavelength range, for 
six time-points (Fig. 9; “Appendix 3”).

In Early heat all time-points correspond to after head-
ing stage while in the other trials time-points one to four 
were taken before heading, time points five and six dur-
ing heading stage and after heading seven to nine time 
points. There is not a clear relationship between the her-
itability and the stage of the crop in which the images 
were taken.

Prediction accuracies of the proposed methods
Comparing vegetation indices versus all bands
Figure 2 shows the prediction accuracy of Methods 1–19 
in the four environments for three time-points (1, 5 and 

Table 2  Methods implemented for  the analyses in  each 
environment

Method Data Model Method Data Model

M1 RNDVI Model 1 M11 All bands with 5PC Model 4

M2 GNDVI Model 1 M12 All bands with 
10PC

Model 4

M3 SRa Model 1 M13 All bands with 
20PC

Model 4

M4 RARSa Model 1 M14 All bands with 
35PC

Model 4

M5 RARSb Model 1 M15 All bands with 
45PC

Model 4

M6 RARSc Model 1 M16 All bands with 
55PC

Model 4

M7 NPQI Model 1 M17 All bands Model 5

M8 PRI Model 1 M18 All bands Model 6

M9 All indi‑
ces

Model 2 M19 All bands Model 7

M10 All bands Model 3
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9). In the Drought environment, the methods with the 
best prediction accuracy were those that used all the 
bands (M10–M19), while in the Irrigated environment 
in time-point 9, most of the methods that use all bands 
were the best in terms of prediction accuracy (methods 
M11–M19); however, in time-point 5, only methods 
M17 and M18 were better in terms of prediction accu-
racy than the methods that were built using the vegeta-
tion indices (M1–M9), but in time-point 1, methods M1, 
M3 and M4 built using the vegetation indices had the 
best prediction accuracy. In the EarlyHeat environment 
(Fig. 2c), the methods with the best prediction accuracy 
were methods M17 and M18, which use all the avail-
able wavelengths, although it is important to point out 
that time-point 1 was better than time-points 5 and 9 in 
methods M10 to M16, which use all the bands. Also, in 
the Melgas (Fig. 2d) and Reduced Irrigated environments 
(Fig. 10; “Appendix 3”), methods M17 and M18 had the 
best prediction accuracy. However, in these environ-
ments the best prediction was observed in time-point 9 
and the worst, in time-point 1. Appendices 1 and 2 show 

the rest of the prediction accuracies for time-points 2, 3, 
4, 6, 7 and 8 for all methods.

Comparing some methods for all time‑points
Compared in this section are methods M1, M2, M9, M10, 
M17, M18, and M19. Methods M1 and M2 were chosen 
because they were built using two of the most widely 
used vegetation indices (RNDVI, GNDVI), whereas M9 
uses all 8 VI simultaneously; M10 uses all bands and 
Bayes B. Methods M17 and M18 were included because 
they provided the best prediction accuracies in all the 
environments using all bands, while method M19 was 
used because it performed well in the last section using 
all bands.

Drought (Fig. 3), Melgas (Fig. 4) and Reduced Irrigated 
(Fig.  11; “Appendix 3”) environments show that time-
points below 6 had lower prediction accuracies and the 
best predictions were from points 7, 9 and the joint time-
points 79, 89, 789, and 6789. Time-point 79, 89, 789 and 
6789 were obtained as the average of the time-points 7 
and 9, 8 and 9, 7, 8 and 9, and 6, 7, 8 and 9 respectively; 

a Drought b Irrigated 

c EarlyHeat d Melgas 
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Fig. 1  Heritability for each wavelength for environments: a Drought, b Irrigated, c EarlyHeat and d Melgas
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this nomenclature is used in the rest of the manuscript. It 
is important to point out that the prediction accuracies of 
time-point 8 were considerably lower than those of time-
points 7, 9, and 6. In the Irrigated environment (Fig. 3), 
a similar trend is observed, yet for some methods (M17 
and M18), time-point 7 provides the best predictions. In 
this environment (Irrigated), the differences in predic-
tion accuracy between time-point 5 and time-points 6, 
7, 8, 9, 79, 89, 789, and 6789 are not strong. This indi-
cates that even with time-point 5, we can generate good 
prediction accuracies for grain yield. In the EarlyHeat 
environment (Fig. 4), all time-points produced good pre-
dictions, although methods M1 and M2 produced lower 
predictions in time-points 7, 9, 79, 89, 789 and 6789. It is 
important to point out that methods M17 and M18 were 
the best in all time-points in all environments, although 
in environments EarlyHeat and Melgas, the superiority of 
these methods is clearer.

Comparing environments for time‑points 5 and 9
Figures  5 and 6 show that there are differences in pre-
diction accuracy between environments. In time-point 

5 (Fig. 5), EarlyHeat was the environment with the best 
predictions, followed by Irrigated and Drought, while the 
worst predictions were observed in Melgas and Reduced 
Irrigation. In time-point 3 (Fig. 6), the behavior was simi-
lar to that of time-point 5, since EarlyHeat was also the 
best in terms of prediction accuracy; however, here Mel-
gas was the worst and the other three environments were 
in the middle. In time-points 7 (Fig.  6) and 9 (Fig.  5), 
the pattern was different since here the best predictions 
were in the Drought environment, and the second best 
was EarlyHeat, since in four of the seven methods pre-
sented in Fig.  5, this environment had the second best 
predictions. In third place is the Irrigated environment, 
while the worst predictions were observed in Melgas and 
Reduced Irrigated. It is important to point out that meth-
ods M17 and M18 were consistently the best in the five 
environments. Furthermore, it should be noted that the 
planting date in EarlyHeat is around 5 weeks earlier than 
the planting dates in the other four environments; thus 
the comparison of prediction performance at the same 
time-points does not represent a comparison at the same 
crop development stage.

Fig. 2  Comparing methods that use vegetation indices and those that use all bands for four environments: a Drought, b Irrigated, c EarlyHeat and 
d Melgas. APC means Average Pearson correlation as a measure of prediction accuracy
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Comparing methods M17 and M18 using all the bands 
and bands with heritabilities >0.5
Figure 7 compares methods M17 and M18 for all time 
points using all bands and only those bands with her-
itabilities >0.5. We observe in Drought that when only 
the bands with heritabilities >0.5 were used, prediction 

accuracies were better than when using all bands for 
both methods (M17 and M18). However, in the Irri-
gated environment using all bands, prediction accu-
racies were slightly better than when using only the 
bands with heritability >0.5; however, the difference is 
not relevant.

Fig. 3  Comparison of some methods with all time-points for the Drought and Irrigated environments

Fig. 4  Comparison of some methods with all time-points for the EarlyHeat and Melgas environments
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In Fig.  8, we observe that in both environments (Ear-
lyHeat and Melgas), using all the bands was a little bet-
ter than using only the bands with heritabilities >0.5, 
although the differences were not significant. The same 
pattern is observed for the Reduced Irrigated environ-
ment (Fig. 12; “Appendix 3”).

Discussion
Heritability estimates of the bands
Results indicated that the heritabilities of each wave-
length are not homogeneous across groups. The Irri-
gated and EarlyHeat environments had the highest 

heritabilities (with values between 0.6 and 0.8), which 
were homogenous across wavelengths, while Drought 
had the lowest heritabilities (with lowest values around 
0.2), which were heterogeneous across wavelengths and 
time-points. Results in “Comparing vegetation indi-
ces vs all bands” section indicate that using all bands 
simultaneously as explanatory variables produced bet-
ter prediction accuracies that using the VIs alone or 
combined. However, predictions were better when 
using only those bands with heritabilities >0.5 com-
pared with using all bands only in Drought, while in the 
other 4 environments, using all bands produced slightly 

Fig. 5  Comparison of environments for some methods in time-points 5 and 9

Fig. 6  Comparison of environments for some methods in time-points 3 and 7
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better prediction accuracies (“Comparing methods M17 
and M18 using all the bands and bands with heritabili-
ties>0.5” section). Therefore, the evidence indicates that 
using all bands simultaneously provided better predic-
tion accuracies than using the VI alone or combined 
and even than using those bands with heritabilities >0.5. 
However, it is important to point out that the methods 
that used VI alone as predictor variables are very hetero-
geneous in terms of prediction accuracy, since some per-
formed very poorly, while others produced reasonable 
predictions (for example, M6).

Prediction accuracy of the methods
Since we now have enough evidence to say that using all 
bands produced better predictions than using individual, 
combined VI and even when we restrict the models to 
less noisy features (H2 > 0.5), we compared the methods 
that used all the bands. Based on the prediction accuracy 
of the methods, results indicate that for this data set, 
methods M17 and M18 are the best for prediction. These 
two methods were better in all environments and in most 
of the nine time-points, and were also considerably better 
than the PC methods (M11 to M16), the Bayes B method 
(M10), and a little better than the functional PLS method 
(M19). The best two methods (M17 and M18) are func-
tional regression models and correspond to models 5 and 

6 described in “Proposed single time-point models for 
the adjusted data” section. Functional regression models 
nowadays have become an increasingly important sta-
tistical tool when the number of covariates is larger than 
the number of observations, where the unit of observa-
tion is generally viewed as a function or a curve defined 
based on some underlying continuous domain, and the 
observed data consist of a sample of functions taken from 
some population, sampled on a discrete grid.

Given the nature of our data, the functional regression 
that we implemented only considered functional predic-
tors; however, this regression method can also be used 
when both the predictors and the responses are func-
tions. For this reason, functional regression models have 
been implemented successfully in many research areas 
(spectroscopy, economics, environmental studies, biosci-
ence, system engineering, etc.). Functional regression is 
also very attractive because it is a non-destructive tech-
nology that measures numerous chemical compounds in 
a variety of products (plant, soil, food, petroleum, wood 
products, etc.) and can be used in large databases in 
experimental and non-experimental settings.

Prediction accuracy for time‑points
Regarding the prediction accuracy for time-points, in 
general, prediction accuracies before time-point 6 were 

Fig. 7  Comparison of methods M17 and M18 with all bands and with bands with heritability >0.5 for all time-points in environments Drought and 
Irrigated



Page 11 of 23Montesinos‑López et al. Plant Methods  (2017) 13:4 

poor in four environments, and all time-points pro-
duced good predictions only in the EarlyHeat environ-
ment; a likely explanation for this may be that in this 
environment the sowing date was around 5  weeks ear-
lier than the sowing dates in the other 4 environments, 
that is, the development of the crop for all time-points 
was more advanced in EarlyHeat. For this reason, the 
empirical evidence indicates that, for this dataset, time-
point 6 achieved good prediction accuracy. Also, in gen-
eral, time-point 6 predictions are better than time-point 
8 predictions. However, we need to be careful when 
interpreting time-point 6, since sowing time was differ-
ent in each environment and the plants were at different 
growth stages when the bands were measured. Using this 
time-point can be helpful for breeders, since it is around 
28 days before time-point 9. Also, it is important to point 
out that the predictions of the average time-points under 
study (79, 89, 789, and 6789) are a little better than those 
of time-points 6, 7 and 9 in methods that used all the 
bands; however, the increase in prediction accuracy is 
not large.

Conclusions
In this research, we proposed using all the bands simul-
taneously as predictor variables instead of using only 
one VI alone or all the VI together. First, we found 
that the heritabilities of the bands were heterogene-
ous across time-points and environments and that the 
best heritabilities were observed in the Irrigated and 
EarlyHeat environments and the worst in the Drought 
environment. We found that using all the bands simul-
taneously produced better predictions than using one 
VI alone or all the VI together. When we used only 
the less noisy bands (H2 > 0.5) in Drought, the predic-
tions improved, while in the rest of the environments 
the results were similar. Out of the methods that used 
all the bands, the best methods across time-points and 
environments were M17 and M18 (functional B-spline 
and Fourier, respectively). Also, time-point 6 and 8 pre-
dictions were slightly lower than those of time-points 
7 and 9, yet were close enough to be used for the pre-
diction of wheat lines before harvesting. Finally, results 
show that the approach used to analyze high-resolution 

Fig. 8  Comparison of methods M17 and M18 with all bands and with bands with heritability >0.5 for all time-points in environments EarlyHeat and 
Melgas
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image data used in this study is promising; however, it 
is also clear that its application in this context is not 
straightforward, since the Bayes B method, which is 
popular for genomic selection, did not produce the best 
predictions. There are many challenges that need to be 
considered in future research using functional regres-
sion models, such as the inclusion of genotype × envi-
ronment interaction, random effects, traits not normally 
distributed and multiple traits as response variables. 
Also, other conventional methods (GBLUP, Bayes A, 
Ridge Regression, Bayes C) used in genomic-enabled 
prediction should be tested in the context of high-reso-
lution imaging data.
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Table 3  Average Pearson correlation (APC), quantile 2.5% (LL) and quantile 97.5% (UL) for the testing set between the 
observed GY and the predicted GY using only the vegetation index as the predictor variable in each of the environments

Method Time Melgas Drought Irrigated Red.Irrigated EarlyHeat

APC LL UL APC LL UL APC LL UL APC LL UL APC LL UL

M1 1 0.148 −0.024 0.312 0.065 −0.103 0.302 0.314 0.173 0.450 −0.041 −0.148 0.072 0.440 0.328 0.566

M1 2 0.148 −0.024 0.312 0.127 −0.028 0.284 0.350 0.267 0.476 −0.072 −0.207 0.010 0.535 0.453 0.623

M1 3 0.167 −0.016 0.280 0.297 0.183 0.434 0.407 0.241 0.525 0.151 0.075 0.254 0.553 0.435 0.667

M1 4 0.239 0.043 0.401 0.352 0.242 0.543 0.381 0.189 0.489 0.206 0.089 0.313 0.561 0.434 0.669

M1 5 0.075 −0.054 0.226 0.248 0.143 0.427 0.438 0.194 0.542 0.188 0.027 0.279 0.598 0.497 0.693

M1 6 0.231 0.025 0.407 0.310 0.191 0.460 0.484 0.359 0.577 0.166 −0.013 0.278 0.598 0.470 0.691

M1 7 0.394 0.275 0.475 0.634 0.509 0.762 0.398 0.189 0.507 0.335 0.196 0.465 0.419 0.330 0.524

M1 8 0.137 −0.091 0.297 0.280 0.174 0.464 0.403 0.239 0.497 0.181 −0.017 0.267 0.560 0.438 0.679

M1 9 0.416 0.312 0.491 0.696 0.616 0.814 0.457 0.336 0.542 0.436 0.286 0.610 0.338 0.255 0.431

M1 6789 0.324 0.178 0.439 0.601 0.486 0.740 0.479 0.318 0.574 0.337 0.169 0.481 0.503 0.411 0.612

M1 789 0.349 0.229 0.451 0.643 0.538 0.774 0.463 0.289 0.563 0.378 0.215 0.527 0.457 0.376 0.569

M1 79 0.415 0.301 0.481 0.681 0.584 0.803 0.441 0.272 0.536 0.404 0.266 0.565 0.385 0.310 0.486

M1 89 0.297 0.133 0.416 0.632 0.540 0.776 0.478 0.328 0.571 0.385 0.202 0.537 0.473 0.399 0.585

M2 1 0.084 −0.069 0.246 0.036 −0.116 0.244 0.199 0.015 0.327 0.036 −0.085 0.248 0.405 0.286 0.579

M2 2 0.084 −0.069 0.246 0.099 −0.100 0.280 0.269 0.113 0.412 0.040 −0.207 0.196 0.502 0.404 0.605

M2 3 −0.023 −0.171 0.114 0.277 0.178 0.372 0.326 0.170 0.453 0.152 0.065 0.283 0.528 0.393 0.651

M2 4 0.120 −0.053 0.324 0.375 0.281 0.536 0.296 0.145 0.392 0.261 0.114 0.388 0.550 0.411 0.689

M2 5 0.028 −0.149 0.192 0.319 0.162 0.510 0.399 0.188 0.502 0.263 0.133 0.334 0.575 0.454 0.675

M2 6 0.139 −0.013 0.297 0.428 0.319 0.586 0.455 0.340 0.547 0.330 0.215 0.398 0.564 0.430 0.653

M2 7 0.412 0.316 0.474 0.673 0.592 0.779 0.437 0.275 0.537 0.405 0.288 0.532 0.439 0.377 0.530

M2 8 0.119 −0.064 0.293 0.325 0.220 0.513 0.333 0.198 0.435 0.278 0.099 0.371 0.556 0.420 0.666

M2 9 0.410 0.303 0.492 0.684 0.611 0.788 0.499 0.369 0.587 0.405 0.311 0.559 0.361 0.257 0.445

M2 6789 0.315 0.219 0.424 0.627 0.544 0.753 0.490 0.361 0.570 0.402 0.281 0.498 0.505 0.414 0.604

M2 789 0.368 0.292 0.475 0.659 0.581 0.778 0.486 0.351 0.579 0.412 0.286 0.525 0.475 0.400 0.575

M2 79 0.423 0.317 0.491 0.695 0.622 0.799 0.491 0.372 0.587 0.417 0.308 0.556 0.408 0.329 0.494

M2 89 0.307 0.196 0.443 0.628 0.545 0.757 0.485 0.359 0.576 0.399 0.275 0.512 0.486 0.407 0.589

M3 1 0.146 −0.039 0.309 0.070 −0.079 0.290 0.300 0.158 0.433 0.028 −0.100 0.192 0.384 0.274 0.514

M3 2 0.146 −0.039 0.309 0.139 −0.010 0.308 0.334 0.260 0.461 −0.034 −0.206 0.058 0.445 0.353 0.518

M3 3 0.162 −0.045 0.301 0.321 0.200 0.485 0.362 0.208 0.480 0.162 0.061 0.277 0.437 0.343 0.544

M3 4 0.225 0.065 0.390 0.380 0.269 0.596 0.339 0.167 0.441 0.221 0.077 0.339 0.454 0.355 0.554

M3 5 0.084 −0.112 0.246 0.247 0.119 0.453 0.392 0.183 0.493 0.183 0.008 0.308 0.500 0.428 0.576

M3 6 0.225 0.053 0.380 0.300 0.162 0.463 0.420 0.300 0.509 0.151 −0.034 0.272 0.501 0.429 0.577

M3 7 0.381 0.276 0.474 0.629 0.500 0.765 0.352 0.158 0.447 0.311 0.134 0.476 0.313 0.216 0.440

M3 8 0.138 −0.088 0.326 0.286 0.182 0.511 0.358 0.201 0.446 0.178 −0.012 0.274 0.475 0.384 0.555

M3 9 0.408 0.288 0.479 0.687 0.596 0.805 0.409 0.313 0.482 0.427 0.290 0.631 0.287 0.198 0.394

M3 6789 0.319 0.183 0.428 0.599 0.487 0.738 0.423 0.270 0.496 0.321 0.147 0.495 0.405 0.338 0.504

M3 789 0.342 0.220 0.447 0.637 0.533 0.766 0.412 0.250 0.488 0.365 0.197 0.549 0.366 0.293 0.472

M3 79 0.405 0.290 0.490 0.674 0.572 0.799 0.393 0.244 0.467 0.391 0.253 0.591 0.304 0.222 0.418

M3 89 0.294 0.135 0.423 0.624 0.536 0.766 0.428 0.295 0.497 0.373 0.196 0.555 0.393 0.335 0.483

M4 1 0.149 −0.035 0.340 0.086 −0.055 0.272 0.303 0.175 0.446 −0.014 −0.154 0.082 0.351 0.215 0.467

M4 2 0.149 −0.035 0.340 0.094 −0.059 0.200 0.327 0.219 0.456 0.039 −0.168 0.157 0.437 0.318 0.515

M4 3 0.224 0.094 0.347 0.312 0.170 0.414 0.311 0.110 0.408 0.194 0.048 0.280 0.446 0.328 0.566

M4 4 0.190 0.039 0.330 0.362 0.222 0.576 0.297 0.032 0.430 0.209 0.060 0.322 0.412 0.298 0.502

M4 5 0.051 −0.111 0.183 0.252 0.115 0.467 0.296 0.010 0.472 0.158 −0.005 0.265 0.471 0.387 0.584

M4 6 0.124 −0.076 0.271 0.148 −0.027 0.315 0.372 0.224 0.497 0.021 −0.075 0.211 0.547 0.391 0.675

M4 7 0.069 −0.046 0.187 0.530 0.381 0.669 0.199 −0.048 0.329 0.131 −0.026 0.230 0.356 0.242 0.491

M4 8 0.060 −0.117 0.200 0.324 0.205 0.527 0.292 0.086 0.432 0.143 −0.051 0.264 0.403 0.299 0.520



Page 14 of 23Montesinos‑López et al. Plant Methods  (2017) 13:4 

Table 3  continued

Method Time Melgas Drought Irrigated Red.Irrigated EarlyHeat

APC LL UL APC LL UL APC LL UL APC LL UL APC LL UL

M4 9 0.080 −0.016 0.185 0.673 0.599 0.788 0.288 0.108 0.381 0.386 0.231 0.490 0.284 0.189 0.383

M4 6789 0.095 −0.065 0.234 0.537 0.412 0.699 0.335 0.129 0.438 0.214 0.021 0.335 0.421 0.322 0.552

M4 789 0.074 −0.056 0.202 0.589 0.476 0.740 0.298 0.073 0.405 0.281 0.108 0.403 0.364 0.260 0.485

M4 79 0.077 −0.031 0.175 0.629 0.517 0.762 0.248 0.028 0.357 0.292 0.149 0.391 0.326 0.225 0.443

M4 89 0.072 −0.085 0.195 0.590 0.502 0.745 0.332 0.133 0.435 0.331 0.127 0.466 0.358 0.264 0.468

M5 1 0.096 −0.019 0.189 0.223 0.132 0.350 0.120 0.046 0.194 0.089 −0.138 0.301 −0.062 −0.217 0.061

M5 2 0.096 −0.019 0.189 0.130 −0.033 0.249 0.086 −0.007 0.182 0.170 0.019 0.361 0.296 0.151 0.392

M5 3 0.232 0.063 0.356 0.118 −0.057 0.225 0.050 −0.131 0.184 0.119 −0.061 0.267 0.368 0.267 0.474

M5 4 0.113 −0.083 0.222 0.085 −0.006 0.181 0.033 −0.101 0.127 0.045 −0.067 0.222 0.315 0.119 0.435

M5 5 0.152 −0.008 0.308 0.018 −0.133 0.131 0.061 −0.062 0.162 0.080 −0.014 0.254 0.422 0.267 0.500

M5 6 0.055 −0.073 0.147 0.174 0.016 0.280 0.249 0.106 0.339 0.191 0.052 0.272 0.402 0.287 0.497

M5 7 0.371 0.260 0.554 0.482 0.346 0.596 0.423 0.371 0.538 0.351 0.197 0.474 0.393 0.300 0.537

M5 8 0.066 −0.103 0.224 −0.052 −0.134 0.024 0.012 −0.079 0.125 0.101 −0.053 0.277 0.432 0.252 0.532

M5 9 0.380 0.267 0.524 0.447 0.254 0.562 0.406 0.340 0.538 0.270 0.124 0.412 0.284 0.113 0.468

M5 6789 0.197 0.098 0.314 0.458 0.278 0.585 0.406 0.339 0.500 0.324 0.168 0.430 0.452 0.366 0.601

M5 789 0.266 0.159 0.407 0.475 0.298 0.602 0.398 0.336 0.520 0.324 0.169 0.443 0.432 0.329 0.590

M5 79 0.384 0.271 0.549 0.495 0.324 0.615 0.425 0.372 0.554 0.322 0.177 0.456 0.353 0.226 0.521

M5 89 0.174 0.051 0.288 0.417 0.215 0.544 0.346 0.269 0.457 0.273 0.133 0.426 0.437 0.320 0.595

M6 1 0.128 −0.064 0.323 0.048 −0.110 0.326 0.273 0.151 0.420 0.027 −0.092 0.177 0.370 0.232 0.521

M6 2 0.128 −0.064 0.323 0.083 −0.082 0.257 0.339 0.254 0.465 −0.036 −0.209 0.058 0.423 0.319 0.509

M6 3 0.123 −0.041 0.222 0.344 0.274 0.472 0.298 0.086 0.426 0.223 0.134 0.315 0.425 0.298 0.522

M6 4 0.206 0.010 0.366 0.392 0.305 0.608 0.255 0.044 0.381 0.287 0.138 0.396 0.437 0.297 0.556

M6 5 0.053 −0.177 0.226 0.302 0.144 0.542 0.304 0.072 0.414 0.259 0.114 0.352 0.508 0.400 0.592

M6 6 0.150 −0.056 0.294 0.383 0.270 0.557 0.386 0.234 0.478 0.271 0.131 0.363 0.515 0.410 0.598

M6 7 0.359 0.292 0.419 0.670 0.569 0.778 0.363 0.179 0.468 0.388 0.261 0.527 0.373 0.288 0.486

M6 8 0.135 −0.077 0.304 0.337 0.246 0.574 0.276 0.091 0.412 0.271 0.105 0.359 0.471 0.348 0.573

M6 9 0.383 0.279 0.451 0.701 0.613 0.811 0.446 0.319 0.522 0.441 0.349 0.618 0.302 0.207 0.403

M6 6789 0.278 0.129 0.388 0.624 0.522 0.761 0.404 0.234 0.492 0.395 0.259 0.525 0.431 0.363 0.532

M6 789 0.319 0.202 0.409 0.661 0.567 0.788 0.400 0.223 0.487 0.418 0.287 0.564 0.395 0.328 0.499

M6 79 0.382 0.294 0.432 0.703 0.611 0.811 0.420 0.275 0.508 0.428 0.314 0.595 0.343 0.256 0.447

M6 89 0.274 0.127 0.397 0.630 0.540 0.773 0.397 0.234 0.493 0.417 0.283 0.559 0.401 0.338 0.498

M7 1 0.040 −0.151 0.201 −0.077 −0.155 0.021 0.031 −0.046 0.151 0.019 −0.133 0.118 −0.046 −0.145 0.056

M7 2 0.040 −0.151 0.201 0.045 −0.082 0.258 0.030 −0.045 0.016 0.030 −0.101 0.169 −0.055 −0.139 0.013

M7 3 0.080 −0.021 0.239 0.040 −0.071 0.230 0.007 −0.105 0.074 −0.065 −0.144 0.018 0.085 −0.051 0.188

M7 4 0.030 −0.055 0.192 0.028 −0.060 0.128 0.021 −0.169 0.173 0.035 −0.098 0.176 0.039 −0.129 0.180

M7 5 −0.038 −0.183 0.049 0.030 −0.005 0.123 0.022 −0.160 0.165 0.105 −0.062 0.266 0.107 −0.008 0.257

M7 6 0.023 −0.128 0.175 −0.099 −0.196 −0.007 −0.054 −0.176 0.066 0.048 −0.016 0.163 0.100 −0.008 0.026

M7 7 0.105 −0.057 0.226 0.188 0.083 0.268 0.183 0.025 0.346 0.290 0.124 0.478 0.161 0.036 0.255

M7 8 0.027 −0.077 0.196 −0.058 −0.099 −0.016 0.170 0.020 0.345 0.055 −0.065 0.138 0.106 0.032 0.202

M7 9 0.108 −0.013 0.207 0.206 0.080 0.315 0.228 0.107 0.308 0.134 −0.004 0.285 −0.020 −0.151 0.084

M7 6789 0.080 −0.044 0.167 0.200 0.075 0.294 0.263 0.170 0.391 0.288 0.158 0.439 0.121 −0.018 0.239

M7 789 0.094 −0.069 0.195 0.244 0.137 0.325 0.264 0.169 0.391 0.286 0.152 0.440 0.121 −0.018 0.239

M7 79 0.132 −0.027 0.251 0.244 0.137 0.325 0.264 0.169 0.391 0.283 0.147 0.434 0.103 −0.029 0.222

M7 89 0.029 −0.114 0.115 0.206 0.080 0.315 0.228 0.107 0.308 0.140 −0.011 0.299 0.032 −0.059 0.178

M8 1 0.126 0.059 0.251 0.019 −0.121 0.099 0.255 0.114 0.351 −0.071 −0.126 −0.019 0.376 0.284 0.521

M8 2 0.126 0.059 0.251 0.074 −0.067 0.157 0.238 0.156 0.326 −0.080 −0.176 0.012 0.519 0.449 0.583

M8 3 −0.050 −0.155 0.012 0.146 0.055 0.252 0.364 0.228 0.500 −0.016 −0.118 0.059 0.511 0.434 0.588

M8 4 0.022 −0.119 0.209 0.176 0.079 0.328 0.372 0.288 0.465 0.050 −0.077 0.184 0.517 0.437 0.613
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Table 3  continued

Method Time Melgas Drought Irrigated Red.Irrigated EarlyHeat

APC LL UL APC LL UL APC LL UL APC LL UL APC LL UL

M8 5 0.056 −0.013 0.196 0.098 0.009 0.232 0.381 0.183 0.507 0.057 −0.087 0.229 0.517 0.448 0.625

M8 6 0.210 0.072 0.389 0.133 −0.045 0.206 0.434 0.357 0.531 0.053 −0.197 0.200 0.486 0.423 0.571

M8 7 0.227 0.052 0.403 0.277 −0.010 0.448 0.327 0.122 0.455 0.104 −0.049 0.205 0.216 0.124 0.321

M8 8 0.038 −0.067 0.147 0.046 −0.087 0.156 0.379 0.323 0.438 −0.071 −0.179 −0.013 0.506 0.407 0.617

M8 9 0.264 0.089 0.346 0.374 0.213 0.469 0.371 0.267 0.467 0.028 −0.118 0.287 0.147 0.039 0.246

M8 6789 0.308 0.112 0.415 0.111 −0.190 0.276 0.441 0.334 0.527 0.065 −0.193 0.200 0.428 0.353 0.529

M8 789 0.287 0.091 0.419 0.075 −0.227 0.283 0.409 0.294 0.504 0.062 −0.151 0.178 0.368 0.285 0.489

M8 79 0.286 0.089 0.419 0.066 −0.224 0.275 0.374 0.247 0.475 0.070 −0.133 0.172 0.217 0.129 0.322

M8 89 0.265 0.090 0.348 0.282 0.156 0.442 0.422 0.346 0.491 −0.095 −0.283 0.038 0.451 0.391 0.564

M9 1 0.190 0.087 0.295 0.284 0.173 0.351 0.317 0.182 0.456 0.187 0.047 0.348 0.530 0.457 0.628

M9 2 0.190 0.087 0.295 0.224 0.119 0.379 0.369 0.270 0.528 0.200 0.085 0.327 0.605 0.500 0.669

M9 3 0.271 0.176 0.416 0.395 0.279 0.562 0.471 0.370 0.661 0.374 0.219 0.475 0.618 0.493 0.705

M9 4 0.320 0.209 0.434 0.432 0.327 0.611 0.461 0.350 0.601 0.379 0.267 0.496 0.632 0.520 0.708

M9 5 0.367 0.236 0.461 0.427 0.274 0.634 0.496 0.325 0.627 0.346 0.235 0.498 0.625 0.517 0.698

M9 6 0.366 0.230 0.462 0.514 0.429 0.626 0.517 0.421 0.622 0.480 0.387 0.536 0.612 0.451 0.702

M9 7 0.433 0.277 0.539 0.691 0.616 0.776 0.537 0.452 0.599 0.453 0.335 0.591 0.548 0.467 0.607

M9 8 0.365 0.241 0.438 0.446 0.350 0.627 0.477 0.376 0.604 0.379 0.259 0.507 0.596 0.490 0.691

M9 9 0.452 0.341 0.592 0.717 0.648 0.825 0.518 0.398 0.600 0.447 0.317 0.615 0.445 0.321 0.557

M9 6789 0.436 0.314 0.542 0.665 0.592 0.763 0.557 0.448 0.666 0.451 0.357 0.544 0.599 0.500 0.671

M9 789 0.422 0.321 0.522 0.683 0.612 0.785 0.558 0.468 0.658 0.447 0.316 0.579 0.599 0.502 0.678

M9 79 0.457 0.311 0.563 0.713 0.638 0.810 0.543 0.456 0.616 0.455 0.324 0.622 0.519 0.452 0.602

M9 89 0.425 0.327 0.521 0.690 0.623 0.799 0.541 0.446 0.657 0.430 0.325 0.544 0.599 0.498 0.701

Appendix 2
See Table 4.



Page 16 of 23Montesinos‑López et al. Plant Methods  (2017) 13:4 

Table 4  Average Pearson correlation (APC), quantile 2.5% (LL) and quantile 97.5% (UL) for the testing set between the 
observed GY and the predicted GY using all the bands as predictor variables in each of the environments

Method Time Melgas Drought Irrigated Red.Irrigated EarlyHeat

APC LL UL APC LL UL APC LL UL APC LL UL APC LL UL

M10 1 0.070 −0.073 0.187 0.205 0.139 0.259 0.132 −0.004 0.274 0.060 −0.088 0.181 0.488 0.320 0.565

M10 2 0.070 −0.073 0.187 0.183 0.065 0.325 0.291 0.124 0.449 0.172 0.084 0.295 0.493 0.399 0.570

M10 3 0.138 0.020 0.285 0.325 0.260 0.413 0.388 0.186 0.567 0.332 0.177 0.457 0.540 0.487 0.609

M10 4 0.242 0.099 0.339 0.397 0.321 0.500 0.378 0.289 0.527 0.294 0.152 0.441 0.530 0.453 0.564

M10 5 0.268 0.132 0.401 0.369 0.250 0.499 0.396 0.309 0.505 0.240 0.105 0.407 0.572 0.448 0.667

M10 6 0.194 −0.054 0.290 0.478 0.338 0.582 0.361 0.209 0.443 0.395 0.288 0.505 0.549 0.437 0.671

M10 7 0.326 0.175 0.451 0.687 0.548 0.789 0.454 0.368 0.546 0.396 0.316 0.465 0.542 0.427 0.640

M10 8 0.289 0.225 0.395 0.434 0.311 0.507 0.392 0.283 0.501 0.288 0.201 0.367 0.525 0.374 0.620

M10 9 0.368 0.204 0.567 0.682 0.583 0.758 0.397 0.202 0.500 0.364 0.248 0.472 0.431 0.333 0.502

M10 6789 0.402 0.298 0.485 0.719 0.652 0.783 0.489 0.412 0.563 0.409 0.339 0.539 0.573 0.461 0.646

M10 789 0.410 0.283 0.506 0.710 0.620 0.770 0.505 0.388 0.571 0.375 0.272 0.446 0.559 0.472 0.624

M10 79 0.347 0.189 0.466 0.694 0.620 0.747 0.451 0.352 0.522 0.386 0.296 0.490 0.512 0.422 0.593

M10 89 0.400 0.326 0.484 0.711 0.640 0.789 0.483 0.368 0.556 0.371 0.271 0.462 0.538 0.405 0.641

M11 1 0.139 0.005 0.304 0.325 0.236 0.376 0.180 0.037 0.292 0.193 0.077 0.320 0.466 0.384 0.575

M11 2 0.139 0.005 0.304 0.250 0.115 0.446 0.217 0.079 0.318 0.238 0.073 0.404 0.430 0.281 0.587

M11 3 0.160 −0.031 0.289 0.442 0.311 0.579 0.474 0.353 0.613 0.389 0.285 0.467 0.310 0.163 0.396

M11 4 0.331 0.230 0.435 0.449 0.325 0.631 0.464 0.363 0.588 0.383 0.256 0.485 0.304 0.096 0.409

M11 5 0.287 0.102 0.419 0.450 0.320 0.646 0.458 0.276 0.541 0.359 0.283 0.486 0.251 0.031 0.412

M11 6 0.368 0.228 0.496 0.500 0.419 0.655 0.167 −0.011 0.261 0.482 0.406 0.541 0.264 0.088 0.393

M11 7 0.260 0.127 0.410 0.699 0.628 0.791 0.281 0.120 0.455 0.413 0.299 0.512 0.198 0.050 0.371

M11 8 0.370 0.276 0.465 0.441 0.336 0.662 0.336 0.203 0.444 0.411 0.320 0.492 0.225 0.021 0.337

M11 9 0.273 0.191 0.377 0.745 0.684 0.834 0.264 0.120 0.399 0.463 0.325 0.549 0.204 0.075 0.337

M11 6789 0.421 0.293 0.490 0.714 0.661 0.799 0.275 0.140 0.418 0.457 0.391 0.540 0.276 0.132 0.439

M11 789 0.388 0.286 0.448 0.723 0.668 0.804 0.320 0.201 0.467 0.458 0.375 0.535 0.274 0.193 0.429

M11 79 0.272 0.173 0.368 0.729 0.664 0.810 0.267 0.099 0.417 0.440 0.332 0.534 0.208 0.046 0.343

M11 89 0.432 0.331 0.502 0.687 0.635 0.781 0.364 0.227 0.494 0.444 0.364 0.544 0.360 0.229 0.490

M12 1 0.136 −0.023 0.266 0.316 0.242 0.366 0.167 0.025 0.298 0.204 0.081 0.331 0.460 0.372 0.573

M12 2 0.136 −0.023 0.266 0.247 0.111 0.478 0.219 0.126 0.307 0.246 0.073 0.393 0.426 0.279 0.584

M12 3 0.168 −0.057 0.317 0.446 0.316 0.594 0.476 0.354 0.618 0.390 0.282 0.476 0.326 0.188 0.429

M12 4 0.323 0.211 0.432 0.449 0.317 0.625 0.459 0.362 0.583 0.382 0.269 0.481 0.316 0.132 0.432

M12 5 0.285 0.109 0.426 0.448 0.301 0.640 0.454 0.274 0.540 0.354 0.284 0.485 0.294 0.078 0.452

M12 6 0.362 0.228 0.475 0.500 0.418 0.658 0.164 −0.003 0.304 0.476 0.400 0.540 0.298 0.188 0.400

M12 7 0.260 0.143 0.393 0.709 0.630 0.807 0.291 0.135 0.475 0.410 0.299 0.520 0.202 0.046 0.390

M12 8 0.366 0.243 0.476 0.455 0.334 0.660 0.332 0.176 0.439 0.404 0.323 0.485 0.244 0.100 0.365

M12 9 0.254 0.176 0.374 0.746 0.689 0.831 0.257 0.085 0.396 0.463 0.331 0.567 0.346 0.176 0.441

M12 6789 0.421 0.298 0.515 0.716 0.661 0.792 0.277 0.142 0.462 0.452 0.398 0.545 0.327 0.221 0.403

M12 789 0.382 0.278 0.451 0.723 0.667 0.799 0.330 0.223 0.511 0.457 0.362 0.545 0.355 0.239 0.459

M12 79 0.261 0.160 0.381 0.743 0.679 0.820 0.263 0.108 0.409 0.452 0.327 0.572 0.330 0.144 0.483

M12 89 0.430 0.331 0.499 0.720 0.655 0.796 0.353 0.224 0.500 0.456 0.343 0.552 0.375 0.263 0.521

M13 1 0.092 −0.040 0.234 0.312 0.230 0.358 0.137 0.005 0.282 0.173 0.034 0.311 0.467 0.368 0.572

M13 2 0.092 −0.040 0.234 0.229 0.078 0.457 0.206 0.089 0.298 0.253 0.136 0.363 0.415 0.263 0.558

M13 3 0.137 −0.084 0.300 0.440 0.323 0.590 0.472 0.355 0.626 0.396 0.253 0.487 0.313 0.195 0.404

M13 4 0.325 0.243 0.425 0.436 0.313 0.612 0.450 0.349 0.560 0.384 0.265 0.474 0.301 0.106 0.419

M13 5 0.273 0.111 0.394 0.443 0.302 0.601 0.446 0.274 0.545 0.344 0.275 0.478 0.288 0.077 0.496

M13 6 0.347 0.196 0.474 0.500 0.417 0.642 0.153 −0.015 0.322 0.466 0.383 0.541 0.291 0.138 0.372

M13 7 0.253 0.163 0.322 0.724 0.634 0.809 0.284 0.144 0.455 0.462 0.335 0.574 0.327 0.169 0.488

M13 8 0.361 0.230 0.476 0.452 0.329 0.639 0.312 0.174 0.420 0.402 0.340 0.480 0.231 0.099 0.368
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Table 4  continued

Method Time Melgas Drought Irrigated Red.Irrigated EarlyHeat

APC LL UL APC LL UL APC LL UL APC LL UL APC LL UL

M13 9 0.238 0.125 0.349 0.741 0.684 0.828 0.243 0.053 0.403 0.455 0.309 0.556 0.332 0.148 0.438

M13 6789 0.420 0.254 0.516 0.715 0.661 0.787 0.257 0.110 0.454 0.447 0.392 0.545 0.321 0.233 0.422

M13 789 0.381 0.235 0.479 0.720 0.665 0.797 0.307 0.192 0.490 0.454 0.370 0.545 0.348 0.240 0.446

M13 79 0.248 0.157 0.368 0.740 0.680 0.821 0.248 0.070 0.406 0.463 0.344 0.593 0.346 0.172 0.494

M13 89 0.425 0.314 0.486 0.728 0.662 0.811 0.338 0.204 0.494 0.455 0.343 0.557 0.366 0.250 0.491

M14 1 0.116 −0.015 0.286 0.291 0.232 0.349 0.126 0.006 0.307 0.145 0.004 0.287 0.489 0.322 0.599

M14 2 0.116 −0.015 0.286 0.222 0.091 0.420 0.200 0.081 0.337 0.267 0.166 0.429 0.399 0.251 0.531

M14 3 0.131 −0.142 0.332 0.430 0.332 0.565 0.466 0.339 0.606 0.394 0.257 0.502 0.297 0.156 0.404

M14 4 0.316 0.233 0.434 0.438 0.329 0.599 0.449 0.356 0.530 0.380 0.256 0.476 0.277 0.086 0.393

M14 5 0.261 0.065 0.378 0.444 0.280 0.608 0.441 0.291 0.525 0.326 0.255 0.452 0.292 0.076 0.503

M14 6 0.340 0.184 0.428 0.502 0.424 0.631 0.139 0.007 0.304 0.457 0.378 0.526 0.314 0.220 0.407

M14 7 0.247 0.135 0.340 0.727 0.641 0.809 0.276 0.172 0.478 0.456 0.331 0.565 0.348 0.213 0.511

M14 8 0.373 0.292 0.466 0.449 0.308 0.641 0.301 0.146 0.420 0.399 0.328 0.480 0.267 0.126 0.420

M14 9 0.234 0.109 0.400 0.740 0.680 0.831 0.227 0.030 0.378 0.455 0.328 0.541 0.363 0.201 0.457

M14 6789 0.420 0.251 0.493 0.722 0.668 0.789 0.240 0.102 0.435 0.439 0.387 0.501 0.348 0.249 0.428

M14 789 0.411 0.303 0.476 0.720 0.664 0.787 0.287 0.177 0.453 0.442 0.338 0.498 0.349 0.263 0.441

M14 79 0.262 0.145 0.403 0.737 0.676 0.806 0.221 0.040 0.385 0.465 0.369 0.555 0.349 0.198 0.481

M14 89 0.448 0.332 0.520 0.749 0.683 0.818 0.326 0.174 0.497 0.453 0.345 0.538 0.365 0.238 0.488

M15 1 0.119 0.010 0.288 0.273 0.194 0.337 0.125 −0.017 0.252 0.139 −0.038 0.281 0.484 0.331 0.593

M15 2 0.119 0.010 0.288 0.217 0.103 0.408 0.194 0.086 0.309 0.250 0.137 0.401 0.408 0.264 0.536

M15 3 0.131 −0.108 0.334 0.425 0.320 0.563 0.461 0.326 0.582 0.392 0.268 0.472 0.299 0.156 0.428

M15 4 0.327 0.249 0.409 0.433 0.315 0.577 0.436 0.347 0.528 0.378 0.237 0.470 0.276 0.037 0.410

M15 5 0.258 0.072 0.367 0.437 0.289 0.581 0.438 0.293 0.518 0.317 0.236 0.428 0.304 0.079 0.562

M15 6 0.336 0.171 0.447 0.508 0.416 0.626 0.146 0.033 0.254 0.454 0.340 0.534 0.313 0.221 0.420

M15 7 0.240 0.127 0.327 0.731 0.643 0.821 0.254 0.134 0.454 0.458 0.341 0.580 0.369 0.228 0.496

M15 8 0.377 0.298 0.467 0.452 0.297 0.635 0.283 0.132 0.395 0.387 0.317 0.473 0.253 0.074 0.393

M15 9 0.213 0.073 0.360 0.737 0.676 0.826 0.218 0.047 0.347 0.460 0.322 0.545 0.358 0.191 0.463

M15 6789 0.414 0.271 0.493 0.744 0.682 0.811 0.225 0.106 0.407 0.434 0.380 0.495 0.351 0.275 0.478

M15 789 0.410 0.297 0.488 0.729 0.669 0.788 0.276 0.143 0.432 0.437 0.326 0.511 0.339 0.270 0.406

M15 79 0.269 0.155 0.373 0.739 0.676 0.811 0.204 0.023 0.379 0.464 0.350 0.563 0.368 0.240 0.475

M15 89 0.452 0.329 0.540 0.759 0.680 0.840 0.314 0.159 0.476 0.455 0.322 0.536 0.363 0.245 0.480

M16 1 0.106 −0.007 0.268 0.261 0.182 0.351 0.110 0.032 0.202 0.119 −0.067 0.270 0.492 0.353 0.582

M16 2 0.106 −0.007 0.268 0.211 0.091 0.397 0.183 0.057 0.311 0.253 0.145 0.374 0.401 0.255 0.556

M16 3 0.107 −0.144 0.313 0.428 0.344 0.567 0.451 0.323 0.583 0.402 0.251 0.479 0.315 0.173 0.409

M16 4 0.321 0.193 0.426 0.431 0.310 0.564 0.429 0.351 0.528 0.381 0.255 0.477 0.279 0.052 0.441

M16 5 0.249 0.067 0.358 0.443 0.325 0.573 0.427 0.285 0.503 0.307 0.205 0.422 0.290 0.083 0.550

M16 6 0.321 0.156 0.445 0.505 0.421 0.626 0.129 0.033 0.239 0.456 0.332 0.558 0.306 0.214 0.432

M16 7 0.228 0.145 0.321 0.730 0.639 0.823 0.239 0.120 0.437 0.453 0.330 0.565 0.355 0.217 0.486

M16 8 0.376 0.306 0.474 0.496 0.380 0.616 0.271 0.122 0.382 0.375 0.315 0.462 0.248 0.087 0.379

M16 9 0.219 0.061 0.331 0.735 0.675 0.827 0.211 0.008 0.333 0.449 0.303 0.535 0.371 0.205 0.488

M16 6789 0.425 0.297 0.490 0.751 0.687 0.812 0.214 0.107 0.384 0.462 0.410 0.555 0.369 0.280 0.527

M16 789 0.434 0.368 0.524 0.737 0.665 0.795 0.259 0.137 0.413 0.437 0.327 0.508 0.375 0.282 0.510

M16 79 0.256 0.160 0.331 0.739 0.678 0.806 0.181 −0.012 0.364 0.450 0.330 0.553 0.359 0.206 0.485

M16 89 0.460 0.353 0.555 0.757 0.678 0.835 0.303 0.173 0.449 0.444 0.312 0.519 0.356 0.249 0.476

M17 1 0.182 0.070 0.285 0.319 0.239 0.397 0.294 0.174 0.438 0.228 0.111 0.326 0.562 0.456 0.651

M17 2 0.182 0.070 0.285 0.298 0.205 0.466 0.396 0.296 0.580 0.302 0.153 0.467 0.605 0.530 0.671

M17 3 0.243 0.125 0.391 0.469 0.340 0.625 0.485 0.321 0.621 0.443 0.349 0.505 0.620 0.540 0.702

M17 4 0.344 0.267 0.436 0.475 0.361 0.626 0.473 0.331 0.619 0.399 0.290 0.461 0.609 0.553 0.699
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Appendix 3
See Figs. 9, 10, 11, 12, 13, 14, 15 and 16.

Table 4  continued

Method Time Melgas Drought Irrigated Red.Irrigated EarlyHeat

APC LL UL APC LL UL APC LL UL APC LL UL APC LL UL

M17 5 0.380 0.256 0.491 0.484 0.378 0.652 0.497 0.401 0.585 0.375 0.283 0.465 0.650 0.540 0.721

M17 6 0.357 0.177 0.476 0.573 0.515 0.683 0.486 0.387 0.604 0.485 0.410 0.539 0.630 0.499 0.696

M17 7 0.450 0.292 0.555 0.736 0.642 0.828 0.563 0.487 0.638 0.474 0.328 0.573 0.610 0.531 0.682

M17 8 0.382 0.287 0.443 0.540 0.429 0.653 0.479 0.367 0.611 0.414 0.319 0.498 0.589 0.527 0.666

M17 9 0.482 0.319 0.630 0.747 0.678 0.842 0.527 0.370 0.649 0.466 0.318 0.596 0.555 0.481 0.622

M17 6789 0.489 0.361 0.554 0.747 0.674 0.816 0.571 0.493 0.625 0.494 0.393 0.595 0.642 0.537 0.700

M17 789 0.501 0.364 0.589 0.745 0.683 0.817 0.573 0.475 0.643 0.482 0.389 0.581 0.647 0.531 0.735

M17 79 0.479 0.306 0.618 0.749 0.674 0.833 0.547 0.443 0.629 0.477 0.344 0.579 0.615 0.522 0.699

M17 89 0.491 0.356 0.575 0.763 0.698 0.842 0.542 0.435 0.634 0.474 0.365 0.565 0.629 0.530 0.720

M18 1 0.181 0.087 0.272 0.319 0.240 0.402 0.291 0.170 0.434 0.224 0.082 0.342 0.560 0.452 0.649

M18 2 0.181 0.087 0.272 0.306 0.210 0.466 0.398 0.300 0.562 0.295 0.154 0.478 0.602 0.528 0.676

M18 3 0.248 0.114 0.388 0.474 0.346 0.635 0.489 0.317 0.629 0.442 0.345 0.500 0.616 0.543 0.697

M18 4 0.344 0.260 0.429 0.486 0.360 0.633 0.479 0.364 0.597 0.409 0.279 0.476 0.612 0.548 0.700

M18 5 0.377 0.243 0.483 0.483 0.377 0.661 0.495 0.383 0.586 0.380 0.285 0.473 0.649 0.539 0.714

M18 6 0.360 0.188 0.472 0.570 0.501 0.674 0.494 0.364 0.610 0.485 0.414 0.540 0.631 0.506 0.698

M18 7 0.450 0.294 0.554 0.736 0.638 0.829 0.564 0.479 0.639 0.474 0.327 0.570 0.614 0.542 0.682

M18 8 0.382 0.296 0.449 0.531 0.404 0.655 0.483 0.361 0.615 0.422 0.334 0.510 0.593 0.532 0.668

M18 9 0.482 0.323 0.630 0.747 0.675 0.843 0.527 0.368 0.645 0.469 0.296 0.612 0.557 0.468 0.629

M18 6789 0.487 0.364 0.547 0.756 0.684 0.825 0.569 0.483 0.626 0.510 0.425 0.599 0.652 0.530 0.710

M18 789 0.503 0.376 0.591 0.750 0.676 0.821 0.572 0.464 0.648 0.503 0.390 0.597 0.652 0.532 0.735

M18 79 0.477 0.304 0.614 0.748 0.669 0.832 0.548 0.435 0.627 0.483 0.330 0.597 0.618 0.517 0.704

M18 89 0.497 0.375 0.589 0.764 0.702 0.840 0.544 0.429 0.642 0.491 0.355 0.591 0.630 0.527 0.725

M19 1 0.084 −0.073 0.184 0.230 0.174 0.296 0.156 0.021 0.280 0.085 −0.055 0.245 0.505 0.344 0.585

M19 2 0.084 −0.073 0.184 0.209 0.096 0.339 0.324 0.170 0.466 0.200 0.105 0.315 0.517 0.435 0.610

M19 3 0.148 0.041 0.304 0.395 0.326 0.518 0.400 0.186 0.587 0.363 0.227 0.470 0.559 0.505 0.630

M19 4 0.247 0.128 0.351 0.395 0.299 0.514 0.393 0.288 0.532 0.321 0.191 0.464 0.556 0.496 0.594

M19 5 0.277 0.168 0.381 0.372 0.263 0.500 0.413 0.303 0.536 0.240 0.122 0.375 0.600 0.483 0.681

M19 6 0.208 −0.058 0.340 0.475 0.341 0.570 0.390 0.250 0.489 0.417 0.284 0.527 0.585 0.459 0.680

M19 7 0.359 0.188 0.482 0.698 0.570 0.800 0.478 0.395 0.549 0.437 0.353 0.497 0.575 0.498 0.675

M19 8 0.299 0.248 0.378 0.448 0.280 0.534 0.391 0.305 0.486 0.307 0.227 0.385 0.564 0.449 0.627

M19 9 0.401 0.236 0.616 0.692 0.598 0.768 0.435 0.270 0.548 0.392 0.290 0.510 0.490 0.392 0.547

M19 6789 0.416 0.297 0.483 0.730 0.651 0.796 0.514 0.465 0.576 0.457 0.350 0.574 0.633 0.506 0.696

M19 789 0.441 0.344 0.521 0.723 0.627 0.789 0.519 0.429 0.597 0.435 0.342 0.518 0.623 0.514 0.679

M19 79 0.392 0.227 0.521 0.709 0.632 0.768 0.460 0.323 0.516 0.424 0.349 0.535 0.571 0.477 0.640

M19 89 0.434 0.388 0.494 0.720 0.649 0.795 0.495 0.389 0.583 0.402 0.294 0.529 0.581 0.479 0.649
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Fig. 9  Heritability of each wavelength for the Reduced Irrigated environment
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Fig. 10  Comparison of methods that use vegetation indices and those that use all bands for the Reduced Irrigated environment
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Fig. 14  Comparison of all methods for time-points 5, 9, 79, 89, 789, 6789 in Drought and Irrigated environments
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Fig. 15  Comparison of all methods for time-points 5, 9, 79, 89, 789, 6789 in EarlyHeat and Melgas environments
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Fig. 16  Comparison of all methods for time-points 5, 9, 79, 89, 789, 6789 in EarlyHeat and Melgas environments
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