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Abstract 

Background  Spike is the grain-bearing organ in cereal crops, which is a key proxy indicator determining the grain 
yield and quality. Machine learning methods for image analysis of spike-related phenotypic traits not only hold 
the promise for high-throughput estimating grain production and quality, but also lay the foundation for better dis-
section of the genetic basis for spike development. Barley (Hordeum vulgare L.) is one of the most important crops 
globally, ranking as the fourth largest cereal crop in terms of cultivated area and total yield. However, image analysis 
of spike-related traits in barley, especially based on CT-scanning, remains elusive at present.

Results  In this study, we developed a non-invasive, high-throughput approach to quantitatively measuring the mul-
titude of spike architectural traits in barley through combining X-ray computed tomography (CT) and a deep learn-
ing model (UNet). Firstly, the spikes of 11 barley accessions, including 2 wild barley, 3 landraces and 6 cultivars were 
used for X-ray CT scanning to obtain the tomographic images. And then, an optimized 3D image processing method 
was used to point cloud data to generate the 3D point cloud images of spike, namely ‘virtual’ spike, which is then used 
to investigate internal structures and morphological traits of barley spikes. Furthermore, the virtual spike-related traits, 
such as spike length, grain number per spike, grain volume, grain surface area, grain length and grain width as well 
as grain thickness were efficiently and non-destructively quantified. The virtual values of these traits were highly con-
sistent with the actual value using manual measurement, demonstrating the accuracy and reliability of the developed 
model. The reconstruction process took 15 min approximately, 10 min for CT scanning and 5 min for imaging and fea-
tures extraction, respectively.

Conclusions  This study provides an efficient, non-invasive and useful tool for dissecting barley spike architecture, 
which will contribute to high-throughput phenotyping and breeding for high yield in barley and other crops.
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Background
The global food demand is expected to increase by 35 to 
56% from 2010 to 2050, and how to meet this demand is 
uncertain [1]. Due to climate change, population boom-
ing as well as following the COVID-19 pandemic, it has 
great challenges in regard to total food production, food 
supply chains and food security [2]. It is reported that 
global food production must increase by 1.5% annually 
to fulfill those needs, especially grain-related cereal crop 
production [3]. Consequently, it is necessary to expedite 
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the genetic improvement of crops for breeding of new 
cultivars with high yield, desired characteristics and 
strong resistance to diverse stresses [4].

Barley (Hordeum vulgare L.) is the world’s fourth-larg-
est cereal crop in terms of cultivation area and total grain 
yield after maize, rice and wheat, which is also one of the 
earliest domesticated crops to contribute significantly to 
agriculture and human civilization [5]. Predominantly, 
barley has important edible, feeding, and industrial 
brewing value [6]. The inflorescence of barley and wheat 
displays a raceme-like branchless shape called spike, as 
the grain-bearing organ, which is the primary source of 
grains that are harvested. Thus, better dissection of the 
spike architecture and high throughput phenotyping of 
spike-related traits will contribute to better understand-
ing the genetic basis for spike development and yield for-
mation, and then accelerate the breeding for high-yield 
varieties.

Nowadays, gene chip and deep sequencing technologies 
represent the commonplace high-throughput genotyp-
ing approach to quickly and efficiently obtaining geno-
typic information in barley [7, 8]. While for phenotyping, 
visual observation is still the commonly used technique 
for assessing barley spike features, although optical sens-
ing is increasingly adopted as a quicker and more precise 
method for collecting phenotypic data [9]. Photons can 
be scattered and absorbed by plant tissues, resulting in 
reflection, transmission, and absorption which can be 
measured via optical sensing [10]. Many sensing meth-
ods have been developed to monitor the physical and 
chemical characteristics of plants, such as X-ray com-
puted tomography (CT), red–green–blue (RGB) imaging, 
and chlorophyll fluorescence (ChlF) [11]. Utilizing X-ray 
CT technology, the projection of morphological features 
can be visualized by recognizing discrepancies in energy 
absorption from a variety of perspectives before and after 
scanning [12]. Several studies have revealed that X-ray 
CT scanning provides a non-destructive and efficient 
approach to perceiving the 3D inner and outer structures 
of plant samples with improved accuracy [13]. Hughes 
et al. conducted the precise extraction and quantification 
of wheat spike characteristics and grain morphological 
features through X-ray microscopic CT, demonstrating 
that CT scanning was far more expeditious than manual 
appraisal, in addition to being non-invasive [14]. A simi-
lar method based on X-ray CT scans was also developed 
for characterizing rice panicle traits [12]. Additionally, 
X-ray CT was used to evaluate panicle morphology in 
sorghum, revealing continuous morphological variation 
across genetically diverse germplasm [15].

Although X-ray CT imaging is already employed for 
high-throughput phenotyping in some crop species, 
its efficiency could be improved by leveraging deep 

learning models [14, 15]. In the past, X-ray CT data was 
processed using conventional computer vision means, 
such as threshold segmentation by image binarization, 
which are not capable of handling a high amount of 
interference. Artificial intelligence technique, such as 
deep learning (DL), which is a subdivision of machine 
learning (ML), can be employed to cull features from 
massive amounts of data for a variety of intricate tasks 
[16]. DL technology is widely used in automating and 
addressing high-throughput phenotyping [17], crop 
yield prediction [18], optimizing irrigation [19], AI-
based soil chemical analysis and fertilization [20], 
crop disease mapping and management [21], and crop 
optimization and modeling [22]. To address biomedi-
cal image segmentation quandaries, Ronneberger et al. 
proposed a UNet model that was developed based on 
a fully convolutional neural network (FCN) [23], which 
has been extensively applied to segmentation in CT 
images, especially in the medical field [24], including 
COVID-19 and other diseases [25] and segmentation of 
infected tissues [26].

However, X-ray CT segmentation is rarely used in 
plants due to many CT hardware and software have 
been designed for medical applications. Optimized 
X-ray CT workflow for botanical study purposes is cru-
cial to addressing a range of phenotypic traits from plant 
organs. With emphasis on more accurate plant trait 
investigation, image analysis based on X-ray CT to auto-
matically identify and segment regions of interest (ROI) 
in CT images has gradually increased [14]. CT analysis 
requires extensive processing whereby a stack of tomo-
graphic images must be segmented layer by layer [27]. 
Huges et al. rejoined the split spikes by Z axis after iso-
lation of grain from slice images, which is based on 2D 
image processing and doesn’t fully make use of the 3D 
information [14]. Biao et  al. proposed another effective 
method using 3D voxels and directly processing the 3D 
images in wheat [28]. Furthermore, Hu et al. used a simi-
lar 3D image method to isolate wheat spikelet from spike 
by finding the nearest grain [29]. Therefore, 3D image 
processing method provided a more effective and opti-
mized method to measure plant phenotypic traits based 
on 3D morphology.

In this study, we integrated X-ray CT imaging technol-
ogy and the UNet DL model to segment and quantify 
morphological characteristics of barley spikes and grains 
as well as their spatial distribution by point cloud 3D 
methods. The aim was to develop a novel, efficient and 
non-destructive way to phenotype barley spike-related 
traits, that could contribute to a better understanding 
of the genetic basis of spike development and eventually 
facilitate breeding of high yielding varieties in barley and 
other crops.
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Results
Development of a pipeline of CT image processing 
with a robust DL‑based segmentation for barley spikes
For high-throughput image analysis through deep 
machine learning, 3D reconstruction modeling is the 
initial and indispensable process, which necessitates the 
automatic batch processing of a considerable number of 
CT scans for the purpose of reconstructing the initial 
targeted item. To achieve high-throughput assessing the 
barley spike architecture and dissect spike-related traits 
based on CT tomography, a pipeline was developed to 
reconstruction the 3D modeling of the barley spike by 
integration of CT image processing and the robust DL-
based segmentation (Fig. 1). First of all, the barley spikes 
were collected from the field and then naturally dehy-
drated. And then, they were fixed by a holder in the 
scanner for straightening and scanned at the maximum 
resolution (75–95 µm/pixel, Additional file 1: Table S1). 
The scanning could achieve covering all the grains in 
less than 10  min. The CT projection images were pro-
duced automatically by the scanner software and output-
ted as CT transaxial slice images (Fig. 2). A large dataset 
of 13,074 CT images was generated, and subsets were 
selected for phenotypic trait extraction and DL training 
(detailed images number in Additional file  2: Table  S2). 
The slice images were processed into a stacked image for-
mat to conserve hardware space. The CT scanning pro-
duced a total of 7 gibibytes (GiB) of projection images, 
which were then compressed using processing scripts 
into 402 mebibytes (MiB) stacked images for extraction 
of phenotypic information.

The Manual delineation of ROI via visual assessment of 
CT images may be laborious and unreliable [30]. In order 
to tackle this issue of barley spike, we employed the clas-
sic UNet structure and developed a model to detect ROI 
in CT images. The model segmented the ROI based on 
DL training from raw slice images or pre-segmented slice 
images. We trained UNet models using 124 labeled train-
ing images, consisting of manually labeled CT images 
of barley variety s113095, s17350 and wheat cultivar D3 
(Fig. 3). The other 30 labeled images were used for UNet 
model evaluation. Our analysis revealed that the segmen-
tation accuracy was about 98.93%, and the mean inter-
section over Union (mIoU) was 90.53% with the category 
mean pixel accuracy (mPA) of 91.92% and the recall rate 
of 91.91%, respectively. These findings demonstrated that 
UNet model could be sufficient for CT image segmenta-
tion in this study.

Finally, we encapsulated our pipeline in the Python 
language following the process steps shown in Fig. 1c–e. 
Firstly, a slice of CT images (Fig.  4a) was processed to 
remove the holder by CTAn software (Fig.  4b). Then, 
impurities such as dust or awns were eliminated during 
the UNet model segmentation process (Fig. 4c). The pre-
dicted results of UNet were set as a mask to segment the 
original images (Fig. 4d) and to obtain the ROI, followed 
by image binarization by the THRESH_OTSU + BINARY 
method provided by OpenCV for auxiliary segmentation 
(Fig. 4e). All processed images per spike were stacked and 
saved as NII type images for extraction of morphologi-
cal traits. A slice of CT images contained the 2D coor-
dinates of each pixel. After CT image processing, the 

Fig. 1  Pipeline of CT-based extraction of spike phenotypic traits of barley. a Optical image of a barley spike. b Slice by slice scanned CT images 
of a barley spike. c 3D reconstruction preview of CT images. d Slice by slice detection of region of interest (ROI) from CT images. e 3D reconstruction 
preview of ROI images. f Detection of barley grains by proposed 3D morphological analysis. The colors in the figures are randomly adopted
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resulting NII files contained 3D coordinates of each pixel, 
and a complete ‘virtual’ spike, stripped of other impuri-
ties (Fig. 1e).

Extraction and validation of morphological features
The purpose of our pipeline was to extract biological 
traits from CT scans of barley spikes. To achieve the phe-
notypic trait extraction, we used a point cloud processing 
program Open3D to extract morphological traits from 
these stacked 3D images, and then generated a virtual 
spike and labeling individual virtual grains with random 
colors (Fig. 5). By applying these computer vision meth-
ods, we extracted the main spike-related traits from the 
perspective of intact barley spikes, including spike length, 
grain number per spike, total grain volume per spike and 
total grain surface area per spike. We also extracted grain 
length, width, thickness, volume, and surface area of each 
grain. The comprehensive definitions of the investigated 
phenotypes are shown in Additional file 3: Table S3.

To validate the accuracy of the virtual traits, we fur-
thermore manually measured the spike-related and 
grain-related traits using rulers and seed analysis system. 
Results showed that the virtual spike length measured by 
the CT and DL imaging method was highly correlated 
with that of manual measurement (r2 = 0.989) (Fig.  6a). 
Similarly, the virtual grain number was also significant 

Fig. 2  CT 3D reconstructed high resolution slice images of a barley spike (22 µm/pixel). a Coronal section. b Sagittal section. c Transverse section. d 
Three section stacked image

Fig. 3  Samples of images of manually labeled regions of grains 
from a CT slice. a, d Labeled slice image of barley variety s17350. b 
Labeled slice image of wheat cultivar s113095. c Labeled slice image 
of wheat cultivar D3
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correlation with that of manual measurement, with the 
correlation coefficient of r2 = 0.975 (Fig.  6b). Simultane-
ously, the grain volume per spike was found to highly cor-
relate with manually measured grain weight (r2 = 0.977) 
(Fig.  6c). However, the average virtual grain surface 
area per spike was found to be relatively slightly weaker 
correlation with the manually measured grain weight 
(r2 = 0.910) (Fig. 6d). 

Comparison of the spike morphometric traits 
among different barley
Based on the optical images and point cloud, we fur-
ther compared the spike and grain-related traits among 

the three types of barley  (Fig.  7). There was a distinct 
discrepancy in the virtual spike length among wild 
(55.3 ± 4.7  mm), cultivar (80.4 ± 4.5  mm), and landrace 
(85.6 ± 5.0 mm) (Fig.  8a). The virtual grain volume per 
spike also differed significantly, with wild barley hav-
ing a smaller volume (491.8 ± 101.5 mm3) than culti-
vated barley (969.1 ± 143.5 mm3) and barley landrace 
(1,036.8 ± 102.6 mm3) due to the divergence in the 
number of grains per spike (Fig. 8b). The average virtual 
grain volume also demonstrated a substantial deviation 
among wild (32.8 ± 8.6 mm3), cultivar (37.5 ± 7.0 mm3) 
and barley landrace (40.9 ± 8.7 mm3) (Fig. 8c). The aver-
age virtual grain surface area of was 165.4 ± 33.7 mm2, 
165.4 ± 32.6 mm2 and 145.6 ± 27.6 mm2 in wild balrey, 
barley landrace and cultivars, respectively (Fig.  8d). 
Apart from the average virtual grain length, other 
grain-related traits, including grain width and grain 
thickness also displayed significant differences among 
the three types (P < 0.001, Fig.  8e–g, Additional file  4: 
Table S4).

The distribution of grain-related traits along the spike 
was further analyzed (Fig. 9). The grain number counted 
upwards from the bottom indicated the position of grain 
in the spike (Fig.  1f ). As illustrated in Fig.  9, the distri-
butions of average virtual volume, surface area, length, 
width, and thickness all peaked in the middle parts of the 
spike. The average virtual grain volume, width, and thick-
ness distribution in the spike of wild barley was inferior 
to that of the other two types (Fig. 9a, d, e). The average 
virtual grain surface area along the spike showed a con-
gruent trend for the three types (Fig.  9b). The average 
virtual grain length along the spike showed difference 
between cultivar and other two types (Fig. 9c).

Fig. 4  Example of slice image processing for detection of ROI. a Original CT slice image. b Holder-removed slice image. c UNet outputted image 
prediction of grains. Red circle highlights the error of UNet predicting. d Segmented image. e Assisted threshold segmentation image. f Direct 
threshold segmentation image without UNet. g Holder-removed direct threshold segmentation image without UNet. h Edge detection image

Fig. 5  Example of spike point cloud image and process of conversion 
of grain images for phenotypic extraction. The colors in the figure are 
randomly adopted
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Discussion
Feasibility of estimating spike morphometric traits from CT 
scan images
Utilizing the traditional phenotyping technique 
requires manual measurement in the field, leading to 
not only considerable labor and time investment, but 
also damage the specimens [11]. The proposed non-
destructive method employs X-ray CT imaging and 
computer vision by image processing and trait extrac-
tion pipelines to characterize barley spikes and accu-
rately quantify their morphometric features. The CT 
image segmentation pipeline robustly segmented the 

spike region of interest and analysis by application 
of the UNet model. The overall processing took only 
4 min per spike to perform using a laptop (CPU-based 
speed: 3.30  GHz, RAM32GB). The extraction pipeline 
based on point cloud is highly efficient and fast, digitiz-
ing the morphological features in less than one minute 
using optimal point cloud cluster analysis parameters. 
The use of CT scanning technology is particularly note-
worthy because it allows for non-destructive analy-
sis of samples, preserving the seed’s integrity to sown 
after the experiment. The ability to capture high-quality 

a b

c d

Fig. 6  Validation of CT-based extraction of barley phenotypic traits. a Spike length. b Grain number per spike. c Relationship between spike weight 
and virtual spike volume. d Relationship between the spike weight and virtual spike surface area



Page 7 of 11Ling et al. Plant Methods          (2023) 19:115 	

images of plant structures in a non-invasive way can 
help researchers to better understand the structure 

and function of plant parts. Meanwhile, it can also be 
used to obtain some traits that can’t be easily accessed 

Fig. 7  Spike images. a Optical images. b 3D reconstruction point cloud images with labeled virtual grains. The colors in the figures are randomly 
adopted

a b c d

e f g

Fig. 8  Comparison of morphological traits in wild barley, modern cultivar and landraces. a Virtual spike length. b Virtual grain volume per spike. c 
Average virtual grain volume. d Average virtual grain surface area. e Average virtual grain length. f Average virtual grain width. g Average virtual 
grain thickness. Ns, not significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001
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by normal manual measurement method, such as grain 
surface and volume.

Combining X‑ray CT scanning and DL modeling in plant 
phenotyping
Previous study has utilized a random forest machine 
learning framework to segment single X-ray CT plant 
leaf scans, which had limitations that some leaf tissues 
could not evenly segmented because the segmentation 
was not processed slice by slice [31]. We were able to sur-
mount this dilemma by leveraging the DL UNet model 
to segment X-ray CT images better. In some basic work-
flows of crop spike X-ray CT scanning [14, 29], segmen-
tation is performed only by binarization. As illustrated 
by Fig.  4f, g, the output of the direct binary threshold 
method produced a higher amount of noise, making it 
challenging to separate the virtual grains. Despite using 
a Deep Learning model for segmentation, errors may still 
arise (Fig.  4c); nevertheless, these can be circumvented 
through the implementation of a binary threshold. Sub-
sequently, we applied the DL model for segmentation 
and then binarization to facilitate the production of more 
precise labeled CT images. As Fig. 4e demonstrated, we 

successfully extracted virtual grains from CT images 
without any image interference.

It is known that the image quality also hampered the 
precision. High-resolution images had not been incorpo-
rated into plant phenotyping pipelines due to the consid-
erable time requirement for processing (greater than 1 h); 
however, it is conceivable that this data contained more 
useful details. If we refine the resolution (< 20 µm/pixel), 
we can get a more definite view when examining the 
internal structure of the spike, and our objective of utiliz-
ing the DL model may then switch to that of classifying 
grain components such as embryo, awn, and endosperm 
(Figs. 2c and 4a).

Optimized 3D image processing for assessing spike‑related 
traits
In order to quantify the spike- and grain-related fea-
tures, the essential step is to extract grains from the vir-
tual spike. A 2D-image-based method was proposed by 
Hughes, using CT slice image pixels for quantification 
of the morphology of grains and the calculation of the 
highest and lowest points in the z-axis [14]. 3D image 
processing procedures developed by Biao and Hu were 

a b c

d e

Fig. 9  Distribution of grain morphological traits along the spike in three types of barley. a Average virtual grain volume. b Average virtual grain 
surface area. c Average Virtual grain length. d Average Virtual grain width. e Average Virtual grain thickness
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comparable by ascertaining the neighboring voxels and 
isolating each grain [28, 29]. In this study, we exploited an 
improved 3D image processing strategy to pinpoint each 
grain with the help of point cloud dbscan clustering algo-
rithm, relying solely on the codes provided by Open3D. 
Computing the attributes of grain can be done quickly at 
minimal expense on a personal computer in less than one 
minute.

By sorting the 11 barley accessions belonging to three 
types, we could more accurately discern the distinctions 
among them. The grains of wild varieties had a smaller 
average volume compared to cultivars and landraces, but 
displayed longer and slender in shape. It appears that the 
grains of modern barley varieties, despite their shorter 
and thicker structure, have higher volumes, larger num-
bers per spike, and greater yield. Interestingly, the virtual 
average surface area of each grain was analogous across 
all three types. Moreover, the distribution of grain traits 
along the spike revealed essential morphological specif-
ics regarding barley spike architecture. The distribution 
of grain morphological traits along the spike indicated 
that grains in the middle region tend to be larger. Simi-
lar results were ascertained in previous studies on wheat 
spikes [29].

Conclusions
This study offered a fast, efficient and non-destructive 
approach to quantitatively measuring the multitude of 
spike architecture in barley by integrating X-ray com-
puted tomography (CT) and a deep learning model 
(UNet). It can efficiently and accurately investigate spike 
length, grains number per spike, volume and surface area 
of grains per spike, and grain length, width, and thickness 
in barley. Furthermore, it was able to determine the spa-
tial distribution of grains along the spike. Based on the 
newly developed method, we systematically identified the 
discrepancies in spike morphology among wild barley, 
landrace and cultivars and the results showed that mod-
ern cultivated barley possesses shorter but more robust 
grains with bigger volumes and higher yield than wild 
barley and landrace. Our study highlights the potential 
of X-ray CT imaging and computer visioning in high-
throughput phenotyping in barley, which will accelerate 
breeding of new varieties with enhanced yield.

Methods
Field experiment and plant materials
The barley materials were grown in a field trial of North-
west A&F University, in Yangling, Shaanxi province, 
China (108.08  E, 34.30  N). A total of 11 barley acces-
sions were used in this study, including 2 wild barley, 3 
landraces and 6 cultivars (Additional file  2: Table  S2), 
which were planted using standard farm practices in the 

2021–2022 cropping season. All treatments were repli-
cated three times, and each was grown in a subdivided 
plot with 1.5 m in length and 0.6 m in width. All barley 
materials were sown on 24th October 2021 and har-
vested on 20th June 2022.

X‑ray CT scanning and image reconstruction
Spikes were scanned using a Skyscan 2214 instrument 
(Bruker Comp., Heidelberg, Germany). Each spike was 
placed in a plastic holder and a few spikes with weak 
stems were fixed by adhesive tape on a disposable plas-
tic platform. The voltage and current of the scanner were 
set at 70  kV and 200  µA, respectively. The specimen 
platform rotation step was set at 0.9 degrees. Exposure 
time for each image was 550 ms, and 13,074 images were 
obtained at total (each number of varieties is listed in 
Additional file 2: Table S2). Each sample preparation and 
loading into the scanner took about 5 min, and scanning 
took about 10 min. 3D reconstruction was performed by 
NRecon (Version, 1.7.5) provided by the Bruker company 
(Heidelberg, Germany), outputting a set of transaxial 
slice 8-bit BMP images. The pixel size of each slice image 
was 75 to 95 µm (Additional file 1: Table S1). Reconstruc-
tion duration per slice took about 0.13 s.

Computer hardware
After CT imaging, a DELL laptop computer with an 
Intel (i9 11980HK) chip with 8 cores, 16 threads of CPU, 
32  GB of memory and an NVIDIA (RTX3080 Laptop) 
GPU was used for writing python scripts, preparation of 
datasets, training DL models, and morphological feature 
extraction.

Image dataset preparation for UNet model training
Because spikes were scanned with a supporting holder, 
each reconstructed CT image was surrounded by a circle 
(Figs. 2c, 4a), which was removed by the Region of Inter-
est (ROI) method using CTAn software (Bruker, Ver-
sion, 1.18.8.0+). Three types of spikes (wheat cultivar D3, 
two-row barley variety s113095 and s17350) were chosen 
as identification prototypes, and 154 slice images were 
labeled for each one. Labelme (version, 5.0.1) was used to 
prepare labeled images.

UNet architecture designation and model training
The original UNet model was used for segmentation of 
CT images in this study. All datasets and model architec-
tures were prepared in Python (version, 3.9.7). Totally, 
124 labeled images were used for training with 40 epochs 
and 4 batch sizes using the Pytorch package (version, 
1.12.1 + cu116) with and 30 labeled images were used 
for testing. The parameter for the loss was established as 
BCEWITHLOGITSLOSS, culminating in the storage of 
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the model with the least loss as the most advantageous 
model.

The performance of CT image segmentation accuracy 
analysis was evaluated using 4 metrics, such as preci-
sion, recall, mPA, and mIoU. These metrics are defined 
as follows:

where TP, FP, and FN are the true positives, false posi-
tives, and false negatives, predicted by the segmentation 
model; k is the total number of categories; Pk is pixel 
accuracy per category.

Slice image processing and stacking
A total of 10,353 transaxial slice images of 11 bar-
ley accessions were passed through the UNet model 
after resizing to 512 × 512 pixels, and outputting pre-
dicted images. The original images were also resized to 
512 × 512 pixels using the OpenCV package (4.5.5.62). 
The predicted images were used as overlapping mask lay-
ers to segment the ROI of grains in the spike from the 
original images, followed by the image threshold segmen-
tation method (THRESH_BINARY + THRESH_OTSU) 
provided by OpenCV to assist the segmentation process. 
After resizing to original pixel size, slice images were 
stacked to NII type via the SimpleITK package (version, 
2.2.0) for easy preservation by classification and prepara-
tion for the next step.

Extraction of plant phenotypic traits from image stacks
The 11 image stacks were visualized by 3D Slicer soft-
ware (version 5.0.3) (and named ‘virtual’ spikes. The NII 
type files were loaded into the Python environment by 
the Nibabel package (version, 2.5.1) and the watershed 
method was used for contour detection by OpenCV 
prior to transforming all array data to point cloud data 
by the Open3D package (0.16.0). The point cloud data 
of virtual spikes was processed by the dbscan clustering 

(1)Precision =
TP

TP+ FP

(2)Recall =
TP

TP+ FN

(3)IoU =
TP

TP+ FP+ FN

(4)mPA =
sum(Pk)

k

(5)mIoU =
1

k + 1

i=0∑

k

TP

TP+ FP+ FN

algorithm (parameter, eps = 3–7, Additional file  1: 
Table S1) by Open3D to segment each grain for count-
ing, and surface reconstruction using the Alpha shapes 
method (alpha = 12) to calculate the surface area of 
grains from the watershed method results. The length, 
width and thickness of grains and spikes were calcu-
lated by the point cloud oriented bounding box. The 
grain volume and surface area were calculated using 
formulae as follows:

where V is calculated volume; n is the number of voxels; 
P is pixel size (um); S is calculated surface area; m is the 
area of mesh surface; mm is millimeter.

Data analysis and validation of the CT‑based 
morphological method
Spikes of 11 barley accessions were selected following 
feasible results of segmentation of virtual spikes. The 
number of grains and the length of spikes were manu-
ally ascertained and compared with the data obtained 
from the CT-based method. The weight of spikes was 
gauged by balance and their correlation with the cal-
culated volume and surface area of virtual spikes were 
determined.

Statistical analysis
The Matplotlib package (version, 3.5.2) was used for 
plotting, and the Scipy package (version, 1.9.0) was used 
for analysis as well as statistical analysis was conducted 
with Python. Correlation analysis was performed using 
the ‘corrcoef ’ function in the Numpy package (version, 
1.22.3). t test was used to compare the differences among 
three barley types in the Scipy package.
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