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MGIDI: a powerful tool to analyze plant 
multivariate data
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Abstract 

Background: Commonly, several traits are assessed in agronomic experiments to better understand the factors 
under study. However, it is also common to see that even when several traits are available, researchers opt to follow 
the easiest way by applying univariate analyses and post-hoc tests for mean comparison for each trait, which arouses 
the hypothesis that the benefits of a multi-trait framework analysis may have not been fully exploited in this area.

Results: In this paper, we extended the theoretical foundations of the multi-trait genotype-ideotype distance index 
(MGIDI) to analyze multivariate data either in simple experiments (e.g., one-way layout with few treatments and traits) 
or complex experiments (e.g., with a factorial treatment structure). We proposed an optional weighting process that 
makes the ranking of treatments that stands out in traits with higher weights more likely. Its application is illustrated 
using (1) simulated data and (2) real data from a strawberry experiment that aims to select better factor combinations 
(namely, cultivar, transplant origin, and substrate mixture) based on the desired performance of 22 phenological, pro-
ductive, physiological, and qualitative traits. Our results show that most of the strawberry traits are influenced by the 
cultivar, transplant origin, cultivation substrates, as well as by the interaction between cultivar and transplant origin. 
The MGIDI ranked the Albion cultivar originated from Imported transplants and the Camarosa cultivar originated from 
National transplants as the better factor combinations. The substrates with burned rice husk as the main component 
(70%) showed satisfactory physical proprieties, providing higher water use efficiency. The strengths and weakness 
view provided by the MGIDI revealed that looking for an ideal treatment should direct the efforts on increasing fruit 
production of Albion transplants from Imported origin. On the other hand, this treatment has strengths related to 
productive precocity, total soluble solids, and flesh firmness.

Conclusions: Overall, this study opens the door to the use of MGIDI beyond the plant breeding context, providing 
a unique, practical, robust, and easy-to-handle multi-trait-based framework to analyze multivariate data. There is an 
exciting possibility for this to open up new avenues of research, mainly because using the MGIDI in future studies will 
dramatically reduce the number of tables/figures needed, serving as a powerful tool to guide researchers toward bet-
ter treatment recommendations.

Keywords: Fragaria × ananassa Dusch, Organic substrates, Multivariate selection, Substrate cultivation, Fruit quality, 
MGIDI
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Background
Agronomic experiments aim to test the effects of lev-
els or combinations of factor levels on plant traits to 
understand the phenomena under study [1–3]. At 
the end of an experiment, the researchers often have 
a spreadsheet with dozens of columns (one for each 
trait), that need to be analyzed to make inferences on 
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the treatment (rows) performance. In its vast majority, 
the analysis of such data sets involves first perform-
ing an analysis of variance (ANOVA) for each trait to 
test the null hypothesis that the effects of treatments 
[(t̂i ] are null [i.e., H0 : t̂i = 0∀i ], and if H0 is rejected, 
implementing a post-hoc test to identify which treat-
ment is significantly different from which other treat-
ment [4–6]. The ambiguity presented in some tests 
such as Tukey’s Honest Significant Difference (HDS) 
test, however, can lead to limited inferences. For exam-
ple, a study using HDS to compare phenolic com-
pounds among 32 strawberry cultivar [7] have observed 
means followed by “cdefghij”. Another similar study 
which aimed to determine the carbohydrates (sugars), 
organic acids, total phenol content, individual phenolic 
compounds, total antioxidant capacity, and volatile 
aroma substances on ten strawberry cultivars [8] used 
Fisher’s Least Significant Difference (LSD) to compare 
the 20 compounds among cultivars. In both cases, the 
main goal would identify superior cultivars, but it was 
extremely difficult to rank the treatments based on 
their performance on multiple traits.

Experienced researchers often keep in mind a set of 
plant traits that an “ideal” treatment should provide. For 
strawberries, for example, it is sought for treatments that 
present productive precocity and a high rate of fruit pro-
duction [9]. Sensory characteristics such as total soluble 
solids content, total titratable acidity, and their relation-
ship, are essential to winning over consumers, as well 
as physical coloring characteristics [10–12]. In addition, 
flesh firmness or resistance to penetration is essential to 
increase the shelf-life of fruits [11, 13]. For strawberries, 
treatments that provide optimal chemical characteristics, 
such as high flavor and aroma, might be poorly produc-
tive, which is not desired by producers. The reciprocal 
is also true. A study showed that the Camarosa culti-
var showed higher production, but lower sugar content 
and higher acidity [11], which may not be attractive for 
fresh consumption, being more suitable for the process-
ing industry. In this context, the use of multivariate tech-
niques would be strongly suggested to take into account 
the correlation structure between traits.

Multivariate exploratory techniques such as Principal 
Component Analysis (PCA) and Linear Discriminant 
Analysis (LDA) have been extensively used for dimen-
sionality reduction and visual approximation of a two-
way table involving treatments and plant traits [14–16]. 
Although these approaches easily provide an overview of 
the relationships between traits, ranking the treatments 
based on trait values remains a challenge. Therefore, 
innovative multivariate approaches are needed to provide 
a better strategic treatment ranking based on multiple 
traits.

In the context of multiple selection, linear indexes can 
be used [17]. One fragility of linear selection indexes is 
the collinearity often observed in the set of assessed 
traits, which can bias the coefficients of multiple regres-
sion, and thus erode selection gains [18]. To overcome 
this fragility, the multi-trait genotype-ideotype distance 
index (MGIDI) has been proposed [19]. The MGIDI 
was originally designed for selecting genotypes in plant 
breeding based on information on multiple traits and 
has been successfully used to select superior genotypes 
[19–24].

The application of the MGIDI in the context of treat-
ments recommendation (e.g., fungicides, fertilizers, man-
agement strategies) in plant experiments is promising but 
not yet explored in recent literature. Therefore, our main 
aim here is to extend the theoretical foundations of the 
MGIDI to analyze plant experiments with information 
on multiple traits, identifying treatments that provide 
favorable performance for most of the traits under study. 
An adaptation of the index is proposed by including 
optional weights for traits that are assumed to be more 
important for the treatment ranking. A simple example 
using simulated data is used to show how the index can 
be used even with a few traits/treatments. A real straw-
berry experiment data that aims to select better factor 
combinations (namely, cultivar, transplant origin, and 
substrate mixture) based on the desired performance of 
22 phenological, productive, physiological, and qualita-
tive traits are used to show the potentialities of the index. 
Our results open up new horizons about how the MGIDI 
can be used beyond the plant breeding context, serving 
as a powerful tool to analyze plant multivariate data.

Methods
Simulated data
A dataset with five treatments and three accessed traits 
was simulated using the function g_simula() from the 
R [25] package metan [26]. This data was analyzed using 
two strategies. In the first, the three traits were analyzed 
using an ANOVA model considering a randomized com-
plete block design. Then, pairwise multiple compari-
sons based on the Tukey test were performed using the 
emmeans R package [27]. In the second, the MGIDI was 
used to rank the treatments according to three selection 
strategies, namely, (1) when higher values are desired for 
all the traits; (2) when lower values are desired for the 
two first traits, and higher values for the last trait; and (3) 
when lower values are desired for all the traits.

Real data: location and cultivation environment
Data on a strawberry experiment was used to demon-
strate the use of the MGIDI for ranking treatments based 
on multiple traits. The experiment was conducted at the 
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Federal University of Santa Maria, Frederico Westpha-
len campus (27 ◦23’S, 53 ◦25’O, 493 masl). The climate is 
Cfa according to Köppen’s classification, where the three 
coldest months of the year have temperatures of −3 to 
18 ◦ C, with an air average temperature in the warmest 
month greater than or equal to 22 ◦ C, and precipitation 
uniformly distributed during the year [28].

An open, substrate-based cultivation system was car-
ried out inside an experimental greenhouse (20-m length, 
10-m width, and 3.5-m height). The strawberry trans-
plants were transplanted into white, 150-µ m thickness 
tubular plastic bags, kept on wooden benches 0.8 meters 
above the ground. Drip irrigation and fertigation were 
performed. The frequency of irrigation and the formula-
tion of fertigation was carried out according to [29]. The 
nutrient dose for fertigation is presented in Additional 
file  1/InternalRef>: Table  1.1. The electrical conductiv-
ity (EC) of the nutrient solution was 1.8 mS cm−1 . The 
irrigation frequency, as well as the time of each irrigation 
pulse, were adjusted based on the solution drained from 
the substrate, monitoring the EC of the nutrient solution.

Plant material and experimental design
The experiment was conducted in a randomized com-
plete block design with four replications and 8 strawberry 
plants per replication. The treatment layout was a three-
way factorial treatment structure with two cultivars 
[Albion (ALB)—neutral days, and Camarosa (CAM) —
short days], two transplants origins [National (NAT), and 
Imported (IMP)], and four organic substrates mixes (S1: 
Sugarcane bagasse + organic compost; S2: Sugarcane 
bagasse + commercial substrate -  CarolinaCarolina®; S3: 
Rice husk + organic compost; and S4: Rice husk + com-
mercial substrate -  CarolinaCarolina®). See details of the 
substrate mixes in Additional file 1: Table 2.1.

The transplants of National origin came from Agudo, 
RS, Brazil (29 ◦62’S, 53 ◦22’O, 83 masl). The Imported 
transplants were produced in the Patagônia Agrícola SA 
nursery, located in the municipality of El Maitén, Argen-
tina (42 ◦3’S, 71 ◦10’O, 720 masl). The transplants of cul-
tivars Albion (National) and Camarosa (National and 
Imported) were transplanted on May 26, 2015. The cul-
tivar Albion imported was transplanted on June 8, 2015.

Assessed traits
The harvests began in the maturation stage and were car-
ried out twice a week. Through the production cycle, a 
total of 22 phenological, productive, physiological, and 
qualitative traits were assessed.

Phenological traits
We evaluated the following phenological traits: phyl-
lochron (PHYL, ◦ C day leave−1 estimated as the inverse 

of the slope of the linear regression between the number 
of leaves in the crown against the accumulated thermal 
sum. A leaf was counted when the leaflets did not touch 
each other; number of days for the beginning of flower-
ing (NDBF, days), computed when the first flower of the 
block was open; number of days for full flowering (NDFF, 
days), computed when all plants in the block had opened 
flowers; number of days for the beginning of harvest 
(NDBH, days).

Productive traits
The fruits from each plot were classified as commercial 
and non-commercial and evaluated separately. We con-
sidered as non-commercial, fruits deformed or with a 
weight of less than 6 grams. In this stage, the following 
productive traits were assessed: number of commercial 
fruits (NCF, fruits plant−1 ); number of non-commercial 
fruits (NCF, fruits plant−1 ); total number of fruits (TNF, 
fruits plant−1 ); weight of commercial fruits (WCF, g 
plant−1 ); weight of non-commercial fruits (WNCF, g 
plant−1 ); total weight of fruits (TWF, g plant−1 ); average 
weight of commercial fruits (AWCF, g fruit−1 ); average 
weight of non-commercial fruits (AWNCF, g fruit−1 ); 
overall average weight of fruits (OAWF, g fruits−1 ); fruit 
yield (FY, Kg ha−1).

Physiological traits
The water use efficiency (WUE, l −1 ) was calculated as 
the ratio between the amount of water used in the entire 
duration of the experiment and the total fruit production 
for each plant.

Qualitative traits
Quality-related traits were assessed in three moments 
throughout the production cycle and averaged to smooth 
possible punctual season effects. The traits assessed 
were: total titratable acidity (TA, mg citric acid 100 g −1 ) 
performed by titration with a standardized NaOH solu-
tion (0.1 mol L −1 ), total soluble solids (TSS, ◦Brix) using 
a manual refractometer (± 2% accuracy), the ration 
between TSS and TA (TSS/AT) calculated using the 
quotient between the total soluble solids content and 
the titratable acidity; flesh firmness (FIRM), determined 
using a bench penetrometer with a 6 mm plunger.

Pulp coloration was evaluated by chroma, hue angle, 
and lightness in CIELCh color space (cylindrical coordi-
nates) after conversion from the CIEL∗a∗b∗ color space 
(cartesian coordinates). First, fruit color was expressed as 
three values [L∗ , for the lightness from black (0) to white 
(100), a ∗ from green (−) to red (+), and b ∗ from blue (−) 
to yellow (+)]. L ∗ , a ∗ , and b ∗ were determined with a col-
orimeter calibrated with a standard white ceramic plate. 
The conversion of a ∗ and b ∗ to C ∗ (CHROMA, relative 
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saturation) and h ◦ (H, angle of the hue in the CIELab 
color wheel) was done using the following formulas: 
C∗ =

√
a∗2 + b∗2 ; and h◦ = arctan (b∗/a∗) . The CIEL∗a∗

b∗ lightness (L∗ ) remained unchanged.

Defining an ideal treatment
In this crucial step, we define an ideal treatment, i.e., 
the one that would provide desired values for all studied 
traits. Based on previous knowledge, and assuming that a 
grower focuses on the early production of strawberries, 
an ideal treatment should provide: (i) plants with high 
water use efficiency that presents a short period between 
planting and beginning of flowering/harvesting, with 
low phyllochron values, i.e., a high number of leaves per 
accumulated thermal sum. Thus, lower values for WUE, 
NDBF, NDFF, NDBH, and PHYL are desired); (ii) high 
fruit yield with a higher number of commercial fruits 
with a high average weight of fruits, which are defined by 
higher values for NCF, TNF, WCF, TWF, AWCF, OAWF, 
and FY); (iii) lower number of non-commercial fruits of 
low average weight, which are defined by lower values 
for NNCF, WNCF, and AWNCF); and (iv) sweet, firm 
fruits with lower acidity and ideal external and internal 
red color, which are defined by lower values for TA and 
higher values for TSS, TSS/TA, FIRM, L, CHROMA, and 
H).

Statistical analysis
Estimated means
To avoid pseudo-replication, plants within replicates 
were averaged. The overall effects of cultivar (CUL), 
origin (ORI), and substrate (SUB) on the accessed traits 
were analyzed using a 3-way multivariate analysis of vari-
ance (MANOVA) using the function manova() from 
the R software, according to the following model.

where Y is an n× p matrix of response variables where 
n is the number of plots, i.e., the combination of levels 
for substract ( s = 1, 2, ..., 4), cultivar ( c = 1, 2), origin 
( o = 1, 2), and block ( b = 1, 2, ..., 4)), and p the num-
ber of accessed traits; X is an n×m model matrix, beig 
m = s × c × o ; b is an m× p matrix of model coefficients; 
and e is an n× p matrix of model residuals.

Pillai’s trace was used as the test of significance as sug-
gested by Hand and Taylor [30]. The predicted values 
from significant terms were further used to create a two-
way table ( Xij ) containing the estimated means for each 
treatment in rows and traits in columns.

Reescaled means
Based on the knowledge of an ideal treatment, we 
reescaled Xij to obtain rXij as proposed by [31].

(1)Y = Xb+ e

where ηnj and ϕnj are the new maximum and minimum 
values for the trait j after rescaling, respectively; ηoj and 
ϕoj are the original maximum and minimum values for 
the trait j, respectively, and θij is the original value for 
the jth trait of the ith treatment. For NNCF, WNCF, 
AWNCF, WUE, NDBF, NDFF, NDBH, PHYL, and TA 
in which lower values are desired, ηnj = 0 and ϕnj = 100 
were used. For all the other traits in which higher val-
ues are desired, ηnj = 100 and ϕnj = 0 were used. In the 
rescaled two-way table ( rXij ), all columns have a 0-100 
range in which 100 is the most desired value. Thus, the 
ideal treatment would be the one with 100 for all traits 
after rescaling.

Factor analysis
The MGIDI [19] was used to rank the treatments based 
on the desired values of the studied trait. First, factor 
analysis was computed with ( rXij ) to account for the cor-
relation structure and dimensionality reduction of the 
data, as follows

where X is a p× 1 vector of rescaled observations; µ is a 
p× 1 vector of standardized means; L is a p× f  matrix 
of factorial loadings; f is a p× 1 vector of common fac-
tors; and ε is a p× 1 vector of residuals, being p and f the 
number of traits and common factors retained, respec-
tively. The eigenvalues and eigenvectors are obtained 
from the correlation matrix of rXij . The initial loadings 
are obtained considering only factors with eigenvalues 
higher than one. Then, the varimax [32] rotation criteria 
is used for the analytic rotation and estimation of final 
loadings. Finally, the scores are computed as follows:

where F is a g × f  matrix with the factorial scores; Z is a 
g × p matrix with the (rescaled) standardized means; A is 
a p× f  matrix of canonical loadings, and R is a p× p cor-
relation matrix between the traits. g, f, and p represents 
the number of treatments, factors retained, and analyzed 
traits, respectively. The number of factors retained was 
based on the Guttman-Kaiser criterion [33] following the 
eigenvalues-greater-than-one rule.

Multi‑trait Genotype‑Ideotype Distance Index
After the factor analysis, the MGIDI is computed as the 
Euclidean distance between the scores of treatments and 
the ideal treatment was computed as follows [19]:

(2)rXij =
ηnj − ϕnj

ηoj − ϕoj
× (θij − ηoj)+ ηnj

(3)X = µ+ Lf + ε

(4)F = Z(AT
R
−1)T
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where MGIDIi is the multi-trait genotype-ideotype dis-
tance index for the ith treatment; γij is the score of the 
ith treatment in the jth factor ( i = 1, 2, ..., t ; j = 1, 2, ..., f  ), 
being t and f the number of treatments and factors, 
respectively; and γj is the jth score of the ideal treatment. 
The treatment with the lowest MGIDI is then closer to 
the ideal treatment and therefore presents desired values 
for all the p traits.

By definition [Eq. (2)], the “ideal” treatment would have 
100 for all analyzed traits after the rescaling process. 
Therefore, γj is defined as the scores [Eq. (4)] of a 1× p 
vector I such that I = [100, 100, ..., 100].

In experiments accessing several plant traits, it is com-
mon that some traits have more importance than oth-
ers. For example, for wheat experiments, grain yield and 
grain mass per spike are two common analyzed traits and 
for both of them, higher values are desired. Given the 
original MGIDI index, both grain yield and the number 
of grains per spike have the same weight in the MGIDI 
computation. It would be desired, however, to give a 
higher weight to yield, prioritizing treatments with a 
higher grain yield, even if they have a lesser number of 
grains per spike. Another example would be the selection 
of strawberry cultivars based on multiple traits [34]. Total 
fruit production is a relevant trait, but the production of 
commercial fruits (fruits not deformed and with more 
than 6 g) becomes more important since only commer-
cial fruits are marketable.

Here, we propose an optional weighting procedure 
that will allow giving higher weights for traits that are 
assumed to have more importance in the treatment rank-
ing. The weighting process is done by simply multiplying 
each element in γj by the corresponding element in the 
weight vector θj , with the same length of γj . By default 
(original MGIDI), a vector of 1’s is considered, meaning 
all traits have the same weight. If a higher value is used 
(e.g., 5), then, the factor that includes the trait with higher 
weight will have a proportionally higher value, shrinking 
the Euclidean distance [Eq. (5)] of the treatment that has 
a higher value for that factor (See an example in Addi-
tional file 1: Supplementary code 3). Here, the selection 
of the better treatments was performed considering a 
higher weight (4) for the number and weight of commer-
cial fruits.

Strengths and weaknesses
The proportion of the MGIDI of the ith treatment 
explained by the jth factor ( ωij ) was used to show the 

(5)MGIDIi =
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0.5 strengths and weaknesses of the treatments and was 
computed as:

where Dij is the distance between the ith treatment and 
ideal treatment for the jth factor. Low contributions of a 
factor suggest that the traits within such a factor are close 
to the ideal treatment.

Principal component analysis
To visually understand the relationships between trait 
and their association with the treatments, we conducted 
a Principal Component Analysis (PCA) with Xij contain-
ing the treatments in rows and traits in columns. A biplot 
was produced with the function fviz_pca_biplot() from 
the R package factoextra.

Data manipulation and the index computation were 
performed in the R Software version 4.1.0 [25] using the 
package metan v1.17.0 [26] and the ecosystem of pack-
ages Tidyverse [35].

Results
Simulated data
Figure  1 shows the pairwise mean comparison for the 
three simulated traits and the treatment ranking based 
on the MGIDI. For the first scenario, where higher values 
are desired for all the traits, T2 was the first ranked by 
the MGIDI (Fig. 1d). Looking at the mean comparisons, 
it can be seen that T2 would have “a” for all the traits (Fig 
1a–c). In the second scenario, T3 was ranked as the bet-
ter treatment (Fig. 1e), since it presented lower values for 
the first two traits (Fig.  1a, b) and higher values for the 
last trait (Fig. 1c). In the last scenario, T4 was considered 
the better treatment (Fig. 1f ) and would have “c” for all 
three traits. Considering a more complex example with 
10 traits accessed in 75 treatments (Additional file 1: Sup-
plementary code 2.2) a pairwise mean comparison per-
formed for each trait becomes worthless since there is no 
way to quickly rank the treatments based on the desired 
value of each trait. When the MGIDI is used with the 
estimated marginal means of a MANOVA (Additional 
file 1: Supplementary code S2.2.2), the treatment ranking 
becomes easier and takes into account the desired sense 
of selection (i.e., if higher or lower values are better).

Multivariate test statistic
The multivariate analysis of variance (Table 1) indicated 
a significant p ≤ 0.05 main effect for substrate (SUB), 
origin (ORI), and cultivar (CUL). For the two-way 

(6)ωij =

√

D2
ij

f
∑

j=1

√

D2
ij
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interaction terms, only the interaction ORI x CULT was 
significant p ≤ 0.05 , indicating that the response of the 
cultivar is dependent on its origin. The three-way inter-
action term (CUL x ORI x SUB) was not significant.

Based on the significance of factors, the MGIDI was 
computed for (i) a two-way table containing in the rows 
the combination of cultivars and origin and in col-
umns the traits, and (ii) a two-way table with substrates 
in the rows and traits in columns. For both cultivar x 
origin interaction and substrate, three factors (FA) 
were retained, explaining 100% of the total variance 

(Table 2). Different traits were grouped into each factor 
depending on the factor studied.

Cultivar × origin interaction
The 22 traits were grouped into the factors (FA) as fol-
lows (Table  2): In FA1, most of the productive-related 
traits AWNCF, FY, NCF, TA, TNF, TSS_TA, TWF, WCF, 
WUE with positive loadings, and NNCF with negative 
loadings; In FA2, the traits CHROMA and PHYL (with 
positive loadings) and AWCF, H, L, OAWF, and WNCF 
(with negative loadings); In FA3, the phenological-related 
traits NDBF, NDBH, NDFF, and the quality-related traits 
TSS and FIRM. Loadings resulting from an orthogonal 
rotation range from − to + 1 and are the correlation 
coefficients between each trait and the factor.

Figure  2a shows the treatment ranking according to 
the MGIDI. The better factor combinations were the 
Albion cultivar with transplants from the imported ori-
gin and the Camarosa cultivar with transplants from the 
National origin. The contribution of each factor to the 
MGIDI (Fig.  2b) is ranked from the most contributing 
factor (close to the plot center) to the less contributing 
factor (close to the plot edge). This suggests that Albion 
of imported origin has strengths related to FA3, i.e., 
higher values of TSS and FIRM and earlier harvest start, 
indicated by lower values of NDDFF, NDBF, and NDBH 
(Fig. 2c; Additional file 1: Figures 1.2-1.4).

The MGIDI provided desired selection differentials 
(SD) for 16 out of 22 studied traits (Fig. 3). For traits in 

a b c

d e f

Fig. 1 Pairwise comparisons for V1 (a), V2 (b), V3 (c), and the MGIDI index for three selection strategies, namely, desired higher values for all traits (d), 
lower values for V1 and V2 and higher values for V3 (e), and lower values for all traits (f)

Table 1 Multivariate analysis of variance of the effects of 
substrate, origin, and cultivar on the analyzed traits

Effect Value F (Pilai’s 
trace)

Hypothesis 
DF

Error DF P-value

Intercept 1.000 10522.936 22 27 1.20E-47

Substrate 
(SUB)

1.809 2.004 66 87 0.0012

Origin (ORI) 0.855 7.249 22 27 1.66E-06

Cultivar (CUL) 0.923 14.700 22 27 6.70E-10

SUB × ORI 1.226 0.911 66 87 0.6525

SUB × CUL 1.523 1.359 66 87 0.0898

ORI × CUL 0.692 2.752 22 27 0.0067

SUB × ORI x 
CUL

1.339 1.063 66 87 0.3923
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a b c

Fig. 2 Treatment ranking based on the MGIDI (a), the strengths and weaknesses view of the treatments (b), and the biplot of the principal 
component analysis performed with the studied traits for the cultivar × origin interaction (c). Strengths and weaknesses are shown as the 
proportion of each factor on the computed multi-trait genotype-ideotype distance index. The smallest the proportion explained by a factor (closer 
to the external edge), the closer the traits within that factor are to the “ideal” treatment. The selected factor combinations were used to compute the 
selection differentials

Table 2 Eigenvalues, explained variance, and factorial loadings after varimax rotation obtained in the factor analysis

Cultivar × origin Substrate

Trait FA1 FA2 FA3 Trait FA1 FA2 FA3

AWNCF 0.63 0.49 0.60 AWCF 0.63 − 0.48 − 0.62

FY 0.93 0.23 0.29 FIRM 1.00 − 0.06 0.05

NCF 0.84 0.42 0.35 FY 0.96 − 0.23 − 0.15

NNCF − 0.72 − 0.67 − 0.17 NCF 0.96 − 0.21 − 0.18

TA 0.84 0.10 0.54 NDBF 0.74 0.14 − 0.66

TNF 0.80 0.52 0.29 NDBH 0.85 − 0.46 − 0.27

TSS_TA 0.97 0.09 0.24 NDFF 0.91 − 0.33 − 0.25

TWF 0.93 0.23 0.29 NNCF − 0.99 0.03 − 0.17

WCF 0.93 − 0.05 0.37 OAWF 0.66 − 0.63 − 0.39

WUE 1.00 0.04 0.03 PHYL 0.88 − 0.01 − 0.47

AWCF − 0.31 − 0.93 − 0.19 TNF 0.98 − 0.18 − 0.13

CHROMA − 0.29 0.89 − 0.36 TWF 0.96 − 0.23 − 0.15

H − 0.63 − 0.78 − 0.01 WCF 0.88 -0.34 − 0.33

L 0.19 − 0.98 0.01 WNCF − 0.83 0.21 − 0.52

OAWF − 0.47 − 0.86 − 0.17 WUE 0.88 − 0.33 − 0.35

PHYL 0.60 0.79 − 0.12 CHROMA − 0.26 0.97 − 0.03

WNCF − 0.65 − 0.75 − 0.14 H − 0.06 − 0.98 0.21

FIRM − 0.32 0.10 − 0.94 L 0.43 − 0.87 − 0.23

NDBF − 0.11 0.07 − 0.99 TA 0.17 − 0.71 − 0.69

NDBH − 0.17 0.07 − 0.98 TSS − 0.26 0.95 0.17

NDFF − 0.16 − 0.24 − 0.96 AWNCF 0.26 0.19 − 0.95
TSS − 0.56 − 0.10 − 0.82 TSS_TA − 0.09 − 0.37 − 0.93
Eigenvalues 14.17 5.24 2.58 Eigenvalues 14.93 3.95 3.12

Variance (%) 64.43 23.82 11.75 Variance (%) 67.85 17.97 14.18

Cummulative (%) 64.43 88.25 100 Cummulative (%) 67.85 85.82 100
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which lower values are desired, the selection differentials 
ranged from − 12.95% (WUE) to 9.02% (NNCF). For the 
traits in which higher values are desired, the SD ranged 
from − 1.32% (CHROMA) to 10.3% (WCF). The posi-
tive SD observed for the productive-related traits were 
mainly due to the Camarosa cultivar of National origin 
(Additional file  1: Figures  2.4, 2.7, 2.9, 2.12, and 2.13), 
which is confirmed by the strengths related to FA1 of this 
treatment (Fig. 2b).

Substrate main factor
Analyzing the substrate main factor, the 22 traits were 
grouped into the factors (FA) as follows (Table 2): In FA1, 
the traits AWCF, FIRM, FY, NCF, NDBF, NDBH, NDFF, 

OAWF, PHYL, TNF, TWF, WCF, and WUE (with posi-
tive loadings); NNCF and WNCF with negative loadings. 
The FA2 grouped the traits CHROMA and TSS (positive 
loading), and H, L, and TA (negative loadings). Finally, 
the FA3 grouped the traits AWNCF and TSS_TA (Fig. 3).

The better-ranked substrates were S3 and S4. These 
substrates have as a common ingredient burnt rice husk 
(70%). The strengths and weaknesses view (Fig. 4b) shows 
that S4 has strengths related to FA3, i.e., lower values for 
AWNCF (Fig. 4c; Additional file 1: Figure 1.1) and higher 
TSS/TA ratio (Fig. 4c; Additional file 1: Figure 2.11). Both 
substrates provided lower values for WUE, indicating 
that compared to the other substrates, a smaller amount 
of water is necessary to produce one Kg of fruit (Fig. 5, 
Additional file 1: Figure 1.9).

The SDs computed with these substrates were in 
desired sense for 18 out of 22 analyzed traits. For traits 
in which lower values are desired, the SD ranged from 
− 28.13% (WUE) to 9.59% (NNCF). For traits in which 
higher values are desired, the SD ranged from − 2.09% 
(TSS) to 28.79% (WCF).

Discussion
Why a multi-trait framework analysis?
Our experimental results suggest that most of the pro-
ductive, phenological, and qualitative traits in strawber-
ries are influenced by the cultivar used, transplant origin, 
cultivation substrates, and the interaction between cul-
tivar and origin of transplants. Previous studies also 
reported a significant effect of cultivars for physico-
chemical traits of fruits [36], phyllochron and phenology 
[37] and external morphanatomy [38]. This is explained 
because the growth and development of strawberries are 
regulated by the complex interaction of factors, such as 
temperature [39], light-temperature interactions [40], 
daylength conditions [41], and cultivation substrate [42].

As new studies evaluate a growing amount of traits 
aiming at better explaining the phenomena [42–44], the 
challenge of summarizing the complex results into an 
easy-to-handle and practical recommendation arises. 
Differently from an approach in which a post-hoc test—
e.g., Tukey’s honest significance test—is used, we have 
shown here how to rank treatments in agronomic experi-
ments based on the values of several traits (Figs.  1, 2a, 
and 4). In our example, this approach indicated that 
imported transplants of Albion strawberry cultivar grow-
ing in substrates where the main component (70%) is 
burnt rice husk provides desired values for most of the 
22 productive, qualitative, physiological, and phenologi-
cal traits assessed in the experiment. Therefore, both for 
simple (i.e., a small number of treatments and traits) or 
complex (i.e., a large number of treatments and traits) 
experiments, the use of the MGIDI is an interesting 

Fig. 3 Selection differentials (%) for productive, qualitative, and 
physiological strawberry traits obtained with the selection of 
Imported Albion and National Camarosa cultivars. Facets groups the 
traits based on the desired selection differentials
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alternative to pairwise multiple comparisons tests (See 
a numerical example in Additional file 1: Supplementary 
codes 2.2).

Based on our results, a grower could cultivate part of 
their area with Imported transplants of Albion cultivar 
to take advantage of earlier fruit production (approxi-
mately 64 days after transplant) and supply to the con-
sumer market fruits with higher flesh firms and total 
soluble solids (Fig. 2b). Our results corroborate with [36], 
which studying 13 strawberry cultivars observed that 
Albion presents high values for fresh firmness and ◦Brix. 
Flesh firmness is very important since it allows identify-
ing treatments that produce fruits with longer shelf life 
and more resistance to transport damages and quality 
loss [45]. The content of total soluble solids defines the 
sweetness in fruits [46], which combined with compo-
nents such as strawberry furanone defines the fruity fla-
vors that characterize a fresh strawberry [47]. Therefore, 
the production of this treatment could be focused on the 
market for in natura consumption.

In another part of the area, the grower could use 
National transplants of Camarosa cultivar to take advan-
tage of higher fruit production. The higher number and 
weight of non-commercial fruits observed in this treat-
ment (Additional file  1: Figs.  1.5 and 1.8, respectively) 
may result in difficulties in fruit marketing since small 
fruits are not desired by consumers [48]. Another weak-
ness of this treatment is related to FA3 (Fig.  2b), where 
fruits with less FIRM and TSS may not be well-accepted 
for fresh consumption.

The treatment ranking based on multiple traits (Fig. 2a) 
combined with the strengths and weaknesses view 
(Fig.  2b) is a powerful tool that can be used to guide 
researchers towards better treatment recommendations.

Univariate selection is not efficient
Considering a univariate recommendation based on FY 
solely, the Camarosa cultivar would be recommended 
since, on average, it is more productive (Additional file 1: 
Fig.  2.4). The origin of transplants, however, must be 
taken into consideration. The recommendation of Cama-
rosa with transplants of National origin based on FY 
would result in higher fruit production. Previous studies 
also reported a greater total fresh fruit mass of Cama-
rosa compared to Albion [49]. This is explained mainly 
because Camarosa can increase the emission of crowns 
compared to Albion, resulting in a higher number of 
leaves. For this reason, at the end of the cycle, the Cama-
rosa cultivar would probably have a higher total number 
of leaves per plant compared to Albion [37, 38].

The univariate selection, however, would result in 
desired values for only 11 out of the 22 analyzed traits 
(Additional file 1: Table 3.1); some examples are related 
to productive traits such as the higher number and 
weight of non-commercial fruits (Additional file  1: 
Figs.  1.5 and 1.8, respectively), qualitative traits such as 
lower flesh firmness and total soluble solids (Additional 
file  1: Figs.  2.3 and 2.10, respectively), and phenological 
traits such as the late beginning of the harvest (Addi-
tional file 1: Figs. 1.4). Previous studies have also shown 
that the beginning of flowering is similar for Camarosa 
and Albion, but full flowering is achieved later in the 
Albion cultivar [49]; this characteristic may be undesired 
by growers.

Alternative substrates in strawberry cultivation
The water use efficiency was highly influenced by 
the cultivation substrate and less by the cultivar used 
(Additional file 1: Fig. 1.9). The high water use efficiency 

a b c

Fig. 4 Treatment ranking based on the MGIDI (a), the strengths and weaknesses view of the treatments (b), and the biplot of the principal 
component analysis performed with the studied traits for the substrate factor (c). Strengths and weaknesses are shown as the proportion of each 
factor on the computed multi-trait genotype-ideotype distance index. The smallest the proportion explained by a factor (closer to the external 
edge), the closer the traits within that factor are to the ’ideal’ treatment. The selected substrates were used to compute the selection differentials
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in substrates with burnt rice husks seems to be related 
to the higher water retention capacity at lower tensions 
(Additional file 1: Fig. 3), which can be explained by its 
favorable physical proprieties such as lower total poros-
ity and aeration space, resulting in higher amounts of 
readily available water (Additional file  1: Table  2.2). 
These physical characteristics are crucial for root 
growth and plant development due to its promotion of 
an adequate air/water balance during plant cultivation 
[50].

Strawberry requires a high amount of water and 
although cultivars with more leaves can produce a 
higher amount of fruits, a higher total leaf area per 
plant can lead to higher transpiration rates, increasing 

the water consumption per fruit produced [51]. It 
should be pointed out that the water use efficiency in 
this study was computed considering the total fruit 
production; so the water use efficiency of Camarosa 
considering the production of marketable fruits would 
possibly be smaller due to its higher weight of noncom-
mercial fruits produced compared to Albion (Addi-
tional file 1: Figs. 1.3).

Future perspectives
In our experiment with strawberries where 22 pheno-
logical, physiological, productive, and qualitative traits 
were assessed in 16 treatments, we were able to rank 
and identify the strengths and weaknesses of the treat-
ments (Figs.  2 and 4). It was noticed that the Albion 
cultivar presents interesting quality features, but efforts 
should be focused on increasing its fruit production as 
well as its water use efficiency in burnt rice husk-based 
substrates. This would be achieved by (i) increasing the 
uptake efficiency of available water through the plant sys-
tem, e.g., by improving root volume and surface area [38]; 
(ii) improving crop transpiration efficiency by acquiring 
more carbon per water transpired, e.g., by improving the 
control of stomatal closure aiming at a positive impact on 
daily vapor pressure deficit [52]; and (iii) increasing the 
partitioning of the acquired biomass into the harvested 
product, e.g., by a better understanding of patterns of 
plant biomass partitioning depending on nitrogen source 
[53].

The MGIDI can be applied to every situation where 
rows (e.g., treatments) need to be ranked based on desired 
values of multiple columns (traits). An application exam-
ple to a published paper [8] shows how strawberries cul-
tivars would be easily ranked based on Polyphenol, sugar, 
organic acid, volatile compounds, and antioxidant capac-
ity (for all traits it was assumed that higher values are bet-
ter). The computed MGIDI ranked the cultivar “Rondo” as 
the better cultivar based on the 27 studied traits (Addi-
tional file  1: Figure S4), which matches the results that 
the authors presented in the discussion of their three, 
6-columns tables. In this context, the MGIDI will dra-
matically reduce the number of tables/figures needed, 
making easier the practical recommendation of superior 
treatments. Thus, the frontier of the MGIDI in the evalu-
ation of several types of plant experiments is expected 
to rapidly expand. The implementation of the method in 
further studies is facilitated by its implementation in free 
and open-source software [26]. In Additional file 1: Sup-
plementary Code 4 (http:// bit. ly/ site- mgidi- pm), we pro-
vide the data and necessary scripts to compute the index, 
which can be easily adapted.

Fig. 5 Selection differentials (%) for productive, qualitative, and 
physiological strawberry traits obtained with the selection of 
Imported Albion and National Camarosa cultivars. Facets groups the 
traits based on the desired selection differentials

http://bit.ly/site-mgidi-pm
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Challenges, advantages, and limitations
The key point underlying MGIDI use is choosing an ideal 
treatment. Researchers should then identify a set of key 
traits to be used, which will certainly vary depending 
on the goal of the study [19]. Compared to other multi-
variate techniques such as the PCA and linear indexes, 
MGIDI has the advantage of an easy process of treatment 
ranking, the strengths and weaknesses view (Fig.  2b), 
and the option to include weights for each trait in treat-
ment ranking (Table 3). Compared to PCA, MGIDI has 
a limited graphical interface to relate the traits to treat-
ments. Therefore, combining MGIDI and PCA would be 
an interesting alternative for future studies. Regarding 
processing time, MGIDI takes a longer time compared 
to PCA, but the elapsed time will be not a limitation to 
implementing the index. For example, for computing the 
index of a dataset with 150 treatments and 50 traits, less 
than four seconds were needed (Additional file  1: Sup-
plementary code 5). Unfortunately, a key limitation of the 
method comes from one of its greatest advantages, i.e., 
taking into account the correlation structure of the data. 
Since factor analysis tends to group both positively and 
negatively tightly correlated variables into the same fac-
tor [54], it will be difficult to select two traits in opposite 
selection gains (i.e., to reduce one and increase the other) 
when they are positively correlated. Then, a further inves-
tigation focused on addressing this limitation would ben-
efit and make the method more consistent and useful.

Conclusions
Using the multi-trait genotype-ideotype distance index 
(MGIDI), we have shown how to select superior treat-
ments in plant experiments where multiple traits have 
been assessed. In our example with strawberry data, the 
treatments selected by the MGIDI were characterized 
by the Albion cultivar originating from imported trans-
plants grown in substrates where the main component 
(70%) is burnt rice husk. The selected treatments pro-
vided desired values for most out of the 22 qualitative, 

physiological, and phenological traits. The strengths 
and weakness view provided by the MGIDI revealed 
that researchers should direct efforts on increasing 
fruit production, improving the water use efficiency, 
and reducing the total acidy of fruits from the Albion 
Cultivar originated from Imported transplants. The 
strengths of this treatment are mainly related to pro-
ductive precocity, total soluble solids, and flesh firm-
ness. Overall, this study opens the door to the use of 
MGIDI to analyze plant multivariate data, standing 
out as a powerful tool to develop better recommenda-
tion strategies. The option of including weights for each 
trait in the selection process will make the index more 
applicable and provide better treatment recommenda-
tions based on several accessed traits. Improving the 
graphical pipeline and divergent selection for positively 
correlated traits are key steps to make the method more 
applicable.
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