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Abstract 

Background: Phytochemicals or secondary metabolites are low molecular weight organic compounds with little 
function in plant growth and development. Nevertheless, the metabolite diversity govern not only the phenet‑
ics of an organism but may also inform the evolutionary pattern and adaptation of green plants to the changing 
environment. Plant chemoinformatics analyzes the chemical system of natural products using computational tools 
and robust mathematical algorithms. It has been a powerful approach for species‑level differentiation and is widely 
employed for species classifications and reinforcement of previous classifications.

Results: This study attempts to classify Angiosperms using plant sulfur‑containing compound (SCC) or sulphated 
compound information. The SCC dataset of 692 plant species were collected from the comprehensive species‑
metabolite relationship family (KNApSAck) database. The structural similarity score of metabolite pairs under all 
possible combinations (plant species‑metabolite) were determined and metabolite pairs with a Tanimoto coefficient 
value > 0.85 were selected for clustering using machine learning algorithm. Metabolite clustering showed association 
between the similar structural metabolite clusters and metabolite content among the plant species. Phylogenetic tree 
construction of Angiosperms displayed three major clades, of which, clade 1 and clade 2 represented the eudicots 
only, and clade 3, a mixture of both eudicots and monocots. The SCC‑based construction of Angiosperm phylog‑
eny is a subset of the existing monocot‑dicot classification. The majority of eudicots present in clade 1 and 2 were 
represented by glucosinolate compounds. These clades with SCC may have been a mixture of ancestral species whilst 
the combinatorial presence of monocot‑dicot in clade 3 suggests sulphated‑chemical structure diversification in the 
event of adaptation during evolutionary change.

Conclusions: Sulphated chemoinformatics informs classification of Angiosperms via machine learning technique.

Keywords: Angiosperms, Chemoinformatics, KNApSAck database, Sulfur‑containing compounds, Molecular 
fingerprints, Monocot‑dicot
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Background
Angiosperms or flowering plants bearing seeds repre-
sent the largest group of living plants. With up to 286000 
different species found on land areas, they exist in vari-
ous forms displaying a wide spectrum of differences in 
embryology, organ-specific anatomy, micromorphology, 
palynology and others [1]. Plants produce structurally 
unique compounds (secondary metabolites) such as the 
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polyphenols, alkaloids, terpenes, phenolics, flavonoids 
and glucosinolates that may or may not significantly sup-
port functional roles such as basic processes in growth, 
development and physiology [2]. The chemical features 
of natural products are gaining complexity in terms of 
the content, composition, structure, cellular localiza-
tion and distribution. The present-day classification of 
Angiosperms follows morphological characteristics for 
species-level distinction. There are two major groups in 
Angiosperms: (i) dicotyledons; seeds with two cotyle-
dons, tap root and leaves with net-like venation and, (ii) 
monocotyledons; seeds with single cotyledons, adventi-
tious root and leaves with parallel venation. Since plants 
are bestowed with a broad chemodiversity, these chemi-
cal information are harnessed as taxonomy markers in 
plant natural system classifications [3–5]. Nevertheless, 
no studies have attempted to classify higher taxa plants 
using chemical information solely as integrative methods 
are rendered much powerful.

Plant sulfur-containing compounds (SCCs) are S-con-
taining amino acid-derived secondary metabolites [6–8]. 
S is the fourth most essential nutrient to plants after 
nitrogen, phosphorus and potassium. The S assimilation 
pathway serves as the precursor for SCC and associated 
metabolite biosynthesis; methionine, cysteine and phe-
nylalanine amino acids, S-adenosylmethionine coenzyme 
and glutathione prosthetic groups [9]. In general, SCCs 
are involved in essential biological activities such as host 
induced defense responses against microbes and herbi-
vores [10, 11], oxidative stress responses and mitigation 
of heavy-metal toxicity [12]. SCCs display broad chemo-
diversity which includes glucosinolates, phytosulfokines, 
sulphated flavonoids and sulfooxy derivatives [13]. In 
glucosinolates, also the largest group of SCCs, there are 
about 120 different forms described in higher plants [14]. 
The SCCs are distributed in numerous species, stretching 
from grass family (wheat, barley, oat), vegetables (tomato, 
broccoli, carrot, celery) and fruit trees [15, 16].

Chemotaxonomic studies for the classification of plant 
species have been conducted at various levels with differ-
ent types of chemical compounds (taxonomic markers), 
mainly secondary metabolites. For example, species-level 
differentiation of Hedysarum genus was achieved using 
chemical profiles of isoflavonoids, chalcones, benzo-
furans, comestans and pterocarpenes [2], Solanum tor-
vum was distinguishable from its closely related member, 
S. erianthum using the information from phenolic mark-
ers such as delphinidin 3,5-O-diglucoside and malvi-
din 3-O-arabinoside and 24-methyllathosterol ferulate. 
Within Selenastraceae, fatty acid methyl ester (FAME)-
based-chemotaxonomy was successfully used to resolve 
the uncertainties encountered from using the molecular 
approach [17]. The significant explosion of metabolomics 

data and databases coupled with machine learning algo-
rithms inform new knowledge in plant research [18–23].

In this study, the graph clustering algorithm (DPClusO) 
was applied for the identification of overlapping clusters 
with similar structural SCCs. The DPClusO algorithm 
generates high density clusters and has been adopted in 
big data analyses such as protein–protein interactions 
[24], identification of functional gene relations from gene 
expression datasets [25], pathway prediction [26] and 
many others [27]. Chemical information offers important 
insights into biochemical systematics, however, the scope 
of SCC chemical structure information to draw organi-
zational concepts in flowering plants is underexplored. 
Presently, very few studies have attempted to use SCCs as 
taxonomy markers for plant system classification. Herein, 
chemoinformatics approach which integrates metabolite-
content and structure similarity information of SCCs are 
applied for Angiosperms classification.

Results
SCC‑producing Angiosperms: distribution and structural 
similarities
A total of 2253 species-metabolite binary relations asso-
ciated with 552 sulfur-containing compounds (SCCs) and 
692 plant species were obtained from KNApSAcK Core 
DB. Of which, 450 species (with at least two SCCs) with 
491 SCCs engaged in a total of 2011 species-metabolite 
relations were fed into the analysis. Figure  1 shows the 
distribution of SCCs in eudicots and monocots of Angi-
osperms. About 97% of the total plants were SCC-pro-
ducing plants (436 eudicots) whilst the remaining small 
percentage were monocots (Fig. 1A). A total of 439 (89%) 
and 48 (10%) SCCs were uniquely present in eudicot and 
monocot, respectively. The following SCCs were com-
mon in both eudicots and monocots: dipropyl disulfide 
(C00001247), propane-1-tiol (C00001267), malonyl-
CoA (C00007260) and 4-coumaroyl-CoA (C00007280) 
(Fig.  1B). The SCCs were annotated into 11 different 
classes described as following: flavonoid, steroid, iso-
thiocyanate, co-enzyme, alkaloid, amino acid, terpenoid, 
glucosinolate, phytoalexin, organosulfur and allicin. Glu-
cosinolate is the most abundant (25% of total SCCs) class 
(124 SCCs), followed by flavonoids (98 SCCs), organosul-
fur (94 SCCs), terpenoids (41 SCCs) and amino acids (33 
SCCs). The iso-thiocyanate and steroid classes represent 
2% of the total SCCs (Fig. 1C).

A total of 4783 metabolite pairs with a Tanimoto coef-
ficient > 0.7 were obtained and 1,200 metabolite pairs 
with a Tanimoto coefficient > 0.85 were selected for net-
work construction. The structural similarity network 
consists of 368 SCCs, with 105 single nodes (Fig.  2A). 
Single node denotes SCC with non-significant struc-
tural similarity score. A total of 335 and 30 SCCs were 
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unique to eudicots and monocots, respectively and three 
SCCs were present in both eudicot and monocot plants. 
The degree of network distributions, as determined by 
power-law elucidated associations between two or more 
neighbouring nodes [40] (Fig. 2B). Only three SCCs com-
mon to eudicot and monocot (purple nodes) showed 
interactions within the sub-network (Fig.  2). Table  1 
shows the metabolite pairs of similar structure SCCs in 
monocot and eudicot plants. The CoA-containing com-
pounds were present in the following pairs: 1,2 (2-enoyl 
CoA) and 3 (Acyl CoA). Pair 4 were similar by amino acid 
grouping whilst pair 5 represented the −OH contain-
ing thiosulfinates (dihydroasparagusic acid, asparagusic 
acid, isobrugierol, brugierol and 3,4-epithiobutyl nitrile). 
Pair 6, volatile metabolites with an unpleasant odour are 
sulfide bond containing compounds (hydrogen sulfide, 
dimethyl disulfide, methyl mercaptan and methyl allyl 
disulfide). More than half of the metabolite pairs present 
in both monocot and eudicot plants (pair 7–16) were 
sulphated flavonoids, a rare representation of flavonoid 
derivatives (Table 1). 

Association between metabolite similarity and biological 
function
A total of 92 clusters were built with 356 different SCCs; 
42 clusters showed association with two or more metabo-
lites (overlapping). The clusters were grouped according 
to classes of SCCs; glucosinolate, flavonoid, organosul-
fur, glycoside, phytoalexin, coenzyme, terpenoid, alka-
loid, steroid, amino acid and isothiocyanate. Clusters 
containing glucosinolates showed the highest distribu-
tion at 28, followed by clusters of flavonoids (17), orga-
nosulfur (11) and glycoside (6) compounds. Clusters 
with less than five SCCs were comprised of phytoalexin, 
coenzyme, terpenoid, alkaloid, steroid, amino acid and 
isothiocyanate compounds (Fig.  3A). Under the net-
work presentation, the flavonoid containing overlapping 
clusters showed the most number of associations. There 
were two free networks, each with 10 and 5 overlapping 
clusters. The network chain with total number of clus-
ters = 10 was mainly represented by monocots. In clus-
ter 12, both the monocot and dicot species were present. 
The small network chain with 5 overlapping clusters 

Fig. 1 Sulfur‑containing compounds (SCCs) in Angiosperms. A 
Distribution of monocots and eudicots with SCCs. B Distribution 
of monocots and eudicots with unique (orange and blue) and 
common (grey) SCCs. C Distribution of the different types of SCCs 
in Angiosperms. All values are generated from a total of 450 plant 
species and 491 SCCs, retrieved from the KNApSAcK database

Fig. 2 Structural similarity network of sulfur‑containing compounds 
(SCCs). Nodes represent the SCCs and edges (grey lines) indicate 
correlation at Tanimoto coefficient > 0.85. Coloured nodes are 
represented as following: (i) yellow node; SCC of monocot, (ii) green 
node; SCC of eudicot and iii) purple node; SCC present in both 
eudicot and monocot. A Structural similarity‑ network visualized 
using Cytoscape ver. 3.7. B Network degree distributions in log‑scale 
computed using NetworkAnalyzer
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Table 1 Sulfur‑containing compounds (SCCs) in monocot and eudicot plants and their pair‑wise structural similarity at Tanimoto 
coefficient > 0.85

M monocot, D eudicot, M/D monocot and dicot

pair KNApSAcK ID SCC Plant KNApSAcK ID SCC Plant

1 C00007263 Cinnamoyl‑CoA M C00007280 4‑Coumaroyl‑CoA M/D

2 C00007280 4‑Coumaroyl‑CoA M/D C00007264 Feruloyl‑CoA D

C00007281 Caffeoyl‑CoA D

3 C00007260 Malonyl CoA M/D C00007259 Acetyl‑CoA D

C00007269 Acetoacetyl‑CoA D

4 C00001267 Propane‑1‑thiol M/D C00001379 l‑Methionine D

C00001365 l‑Homocysteine D

5 C00000305 Dihydroasparagusic acid M C00048433 Isobrugierol D

C00000304 Asparagusic acid M C00007668 3,4‑Epithiobutyl nitrile D

C00048339 Brugierol D

6 C00001257 Methyl allyl disulfide M C00007266 Hydrogen sulfide D

C00001246 Dimethyl trisulfide M C00007323 d‑Cysteine D

C00001266 Propanethial S‑oxide M C00001351 l‑Cysteine D

C00001245 Dimethyl disulfide M C00001258 Methyl mercaptan D

C00000747 S‑Methyl cysteine M

7 C00004457 Tricetin 7,3ʹ‑disulfate M C00004355 6‑Hydroxyluteolin 7‑sulfate D

C00004328 Luteolin 7‑sulfate D

C00004428 8‑Hydroxyluteolin 7‑sulfate D

8 C00004367 Luteolin 4ʹ‑methyl ether 3ʹ‑sulfate M C00004328 Luteolin 7‑sulfate D

9 C00004329 Luteolin 3ʹ‑sulfate M C00004328 Luteolin 7‑sulfate D

C00004958 Quercetin 3ʹ‑O‑sulfate D

10 C00004331 Luteolin 7,3ʹ‑disulfate M C00004406 6‑Hydroxyluteolin 3ʹ‑methyl ether 7‑sulfate D

C00004328 Luteolin 7‑sulfate D

C00004969 Isorhamnetin 7‑O‑sulfate D

C00004957 Quercetin 7‑O‑sulfate D

11 C00004368 Luteolin 4ʹ‑methyl ether 7,3ʹ‑disulfate M C00004965 Quercetin 3,7,3ʹ,4ʹ‑tetra‑O‑sulfate D

C00004412 6‑Hydroxyluteolin 6,3ʹ‑dimethyl ether 7,4ʹ‑disulfate D

C00004411 6‑Hydroxyluteolin 6,3ʹ‑dimethyl ether 7‑sulfate D

C00004328 Luteolin 7‑sulfate D

C00004972 Isorhamnetin 3,7,4ʹ‑tri‑O‑sulfate D

12 C00004356 Luteolin 3ʹ‑methyl ether 7‑sulfate M C00004412 6‑Hydroxyluteolin 6,3ʹ‑dimethyl ether 7,4ʹ‑disulfate D

C00004411 6‑Hydroxyluteolin 6,3ʹ‑dimethyl ether 7‑sulfate D

C00004328 Luteolin 7‑sulfate D

C00004969 Isorhamnetin 7‑O‑sulfate D

13 C00011343 Malvidin 3‑glucoside‑5‑(2ʺ‑sulfatoglucoside) M C00006073 Tamarixetin 3‑glucoside‑7‑sulfate D

C00013898 Quercetin 3‑glucoside‑3ʹ‑sulfate D

14 C00006086 Isoorientin 7‑O‑sulfate M C00006074 Patuletin 3‑glucoside‑7‑sulfate D

15 C00006087 Vitexin 7‑O‑sulfate M C00004500 Isoscutellarein 4ʹ‑methyl ether 8‑(2ʺ‑sulfatoglucuronide) D

C00004498 8‑Hydroxyapigenin 8‑(2ʺ‑sulfatoglucuronide) D

C00004253 Isoscutellarein 4ʹ‑methyl ether 8‑(2ʺ‑sulfatoglucoside) D

C00013648 Isoscutellarein 4ʹ‑methyl ether 8‑(2ʺ,4ʺ‑
disulfatoglucuronide)

D

C00013644 8‑Hydroxyapigenin 8‑(2’’,4ʺ‑disulfatoglucuronide) D

16 C00006084 Orientin 7‑O‑sulfate M C00004500 Isoscutellarein 4ʹ‑methyl ether 8‑(2ʺ‑sulfatoglucuronide) D

C00006075 Gossypetin 8‑glucoside‑3‑sulfate D

C00004498 8‑Hydroxyapigenin 8‑(2ʺ‑sulfatoglucuronide) D

C00045108 Theograndin II D

C00004427 8‑Hydroxyluteolin 8‑glucoside‑3ʹ‑sulfate D

C00004435 8‑Hydroxyluteolin 4ʹ‑methyl ether 8‑glucoside‑3ʹ‑sulfate D
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showed three clusters with a mixture of eudicots and 
monocots and the remaining were represented by eud-
icots only. Cluster 4, also the hub cluster showed associa-
tion with four different clusters (1, 5, 79 and 85) through 

9 different flavonoids indicated as following: cluster 
4–5; C00013955, C00004977, C00084979, cluster 1–4; 
C0004968, C0004956, C0004966, C0004974, cluster79-4; 
C0004981 and cluster 4–85; C0004977 (Fig.  3B). In the 

Fig. 3 Structural similarity clustering by DPClusO algorithm. A Distribution of sulfur‑containing compound (SCC) clusters. B Network of overlapping 
clusters obtained from the network clustering analysis. Grey line indicates SSC association between the clusters. Red node represents the KNApSAcK 
cluster ID and the SCCs are denoted as C000XXXXX‑edges (grey line)
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glucosinolate containing overlapping cluster network, 
only dicot species were identified in all the individual 
clusters. There were only one big (> 3 clusters) network 
chain and 3 small chains (≤ 3 clusters). The biggest chain 
contained 7 individual clusters connected by 13 different 
glucosinolates. Two chains of three overlapping clusters 
were connected by 3 and 5 different glucosinolates. There 
are 4 independent pair-wise clusters connected by a sin-
gle glucosinolate. Cluster 6 showed the highest number 
of interactions and appeared as the hub cluster in the glu-
cosinolate overlapping cluster network. Cluster 3–6 were 
connected by C00007843, C00007586 and C00007857 
while cluster 8–6 were connected by C00007340, 
C00001463, C00001473 and C00007796 (Fig. 3B). In the 
glycoside and coenzyme network of overlapping clus-
ters, small pairwise networks were observed. The glyco-
side network of overlapping clusters was represented by 
monocots only whereas the coenzyme network of over-
lapping clusters showed a representation of both the eud-
icots in clusters 27–87 only. In clusters 46–47, monocots 
were present in cluster 46 only whilst cluster 47 showed a 
combination of monocots and dicots (Fig. 3B).

Pathway enrichment and Angiosperm phylogeny
From a total of 356 SCCs, only 47 metabolites from 24 
clusters were mapped into 53 KEGG metabolic pathways. 
A total of 23 clusters were involved in the secondary bio-
synthesis pathway (map01110) whilst 17 clusters showed 
participation in the 2-oxocarboxylic acid metabolism 
(map01210) and glucosinolate biosynthesis (map00966). 
Six clusters were involved in plant secondary metabolite 
biosynthesis (map01060), and four clusters in cysteine 
and methionine metabolism (map00270), phenylala-
nine metabolism (map00360), tryptophan metabolism 
(map00380), phenylpropanoid biosynthesis (map01061) 
and plant hormone (map01070) pathways. The SCCs in 
cluster 1 were involved in flavon and flavonol biosyn-
thesis. The pathway-oriented clustering analysis showed 
that 23% of SCCs from a similar cluster were mapped 
within a similar pathway. For example, overlapping clus-
ters composed of clusters 46 and 47 showed the presence 
of functionally related acetyl-CoA, malonyl-CoA and 
acetoacetyl-CoA intermediates in lipid, carbohydrate, 
and amino acid metabolism pathways. The cysteine and 
methionine metabolism pathway contained clusters 9, 
39 and 64 (Fig. 4). In the phenylpropanoid pathway, both 
clusters 87 and 27 occupied a localized region within the 
pathway map (Fig. 5). 

The pathway-oriented cluster mapping indicated that 
structurally similar metabolite clusters show locali-
zation in reaction steps within the KEGG pathway. 
Most of the metabolite cluster present in either the 

intermediary metabolism or specific metabolism of 
KEGG metabolic pathway maps. In the cysteine and 
methionine pathway map (map00270), the correla-
tion between cluster 9, cluster 39, and cluster 64 gov-
erned the continuous reaction steps. Coumaroyl-CoA 
found present in cluster 27 and cluster 87 indicate an 
intermediatory role in the propanoid biosynthesis. 
In the cysteine and methionine metabolism pathway, 
three metabolites from cluster 9 and two metabolites 
each from clusters 39 and 64 were found through the 
pathway-oriented cluster mapping (Fig.  4). The path-
way map is divided into two regions of cysteine path-
way (cluster 9) and methionine pathway (cluster 39 
and cluster 64). For overlapping clusters, the localized 
regions of the pathways are highly intercepted between 
two or more metabolite clusters (Fig.  5). For example, 
two localized regions of cluster 27 and cluster 87 were 
intercepted at coumaroyl-CoA, a structurally similar 
metabolite present in both clusters.

The transformed species-SCC binary relations of 
450 species and 491 SCCs produced a 450 × 227 binary 
matrix. The 450 plant species were classified into 50 hier-
archical clusters and each cluster represented plants with 
a similar class of SCC content. The Angiosperms phy-
logeny with three distinct clades suggests that plant spe-
cies with similar metabolite content were much closely 
related within the hierarchical cluster. Clade 1 and 2 were 
represented by eudicots only (total plants, 244) whilst 
clade 3 contained a mixture of both eudicot and mono-
cot plants. The hierarchical cluster delineated Angio-
sperms into clade 1 and clade 2 of 244 eudicots and clade 
3, a mixture of 14 monocots and 192 eudicots. A detailed 
view of the Angiosperm phylogeny species and pathway 
description are provided in Additional files 1 and 2.

At an average hierarchical clustering value of 50, a total 
of 46 plant species (92%) represented the eudicot clus-
ters, one (2%) corresponded for monocot cluster and 
three in monocot-dicot, in combination cluster. Gener-
ally, 80% (40) of the clusters, were comprised of eudicots 
mainly. Among them, 70% of the eudicots were glucosi-
nolate producers. The remaining eudicots from clus-
ter 1, cluster 8, cluster 10, and cluster 44 found in clade 
3 showed production of various forms of SCCs (Fig.  6). 
Similar clusters comprised of both monocot and eud-
icot plants were found in cluster 1, cluster 5 and cluster 
43. In cluster 1, two monocots (Zingiber officinale and 
Asparagus officinalis) and a single eudicot (Bruguiera 
gymnorhiza) produced dithiolan and sulfonic acid. Mean-
while, dipropyl disulfide present in Allium sp. (monocot) 
and Petiveria alliacea (eudicot) were in similar sub-clade 
under cluster 1. Most of the metabolites from cluster 5 
and cluster 43 are composed of SCC from the flavonoid 
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class (Additional file  2). For instance, flavonol O-glyco-
side, a sulphated flavonoid was highly distributed in eud-
icot, whereas the flavone C-glycoside or glycoflavone was 

observed in monocot. Glycoflavone, such as vitalexin, 
orientin and luteolin were more abundant in monocots 
as compared to the eudicots [28–32].

Fig. 4 Metabolite clusters mapped within the cysteine and methionine metabolism (map00270) pathway. Coloured blocks represent clusters of 
unique sulfur‑containing compounds (SCCs): blue; cluster 9, green; cluster 39 and orange; cluster 64
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Discussion
The sample number poses biasness to a certain extent 
(eudicot number > monocot number), however, the net-
work clustering performed using DPClusO algorithm 
corrected for the sampling bias error [33]. Based on 
Angiosperms chemo-information available in the KNAp-
SAck database, a total of 450 different plant species 
with SCCs was identified. The Angiosperms selected for 

classification were represented by eudicots, mostly (97% 
of the total plants). The SCC distribution among the eud-
icots was much greater as compared to the monocots. 
Glucosinolate was ranked as the most abundant class 
of SCC in Angiosperms whereas the isothiocyanate and 
steroid emerged as the smallest class. From the ecologi-
cal point of view, glucosinolates are rendered as natural 
pesticides, posing toxicity to a wide range of organisms 

Fig. 5 Metabolite clusters mapped within the phenylpropanoid biosynthesis (map00940) pathway. Coloured blocks represent clusters of unique 
sulfur‑containing compounds (SCCs): blue; cluster 27, and orange; cluster 87
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from insects, bacteria, fungi, nematodes and mammals 
[34]. Glucosinolates inherent a chemically stable struc-
ture and remain biologically inactive within the sub-cel-
lular compartments distributed within the plant tissues. 
Glucosinolates are activated by physical actions such as 
tissue damage, chewing and food processing. The glu-
cosinolate-myrosinase system functions as plant natural 
defense system against insects and specialized receptor 
cells stimulated by defoliating pests (eggs and larvae). 
Upon physical injury, the endogenous enzyme myrosi-
nase hydrolyzes glucosinolate into toxic and antinutri-
tional biologically active products [14]. The glucosinolate 
representation is inversely proportional to its breakdown 
products which includes isothiocyanates, oxzzolidine-
2-thiones, nitriles, epithionitriles, organic cyanides, 
oxazolidinethiones and ionic thiocyanate. This explains 
the association between glucosinolate and the degraded 
by-products in plant defense system. Flavonoids and 
organosulfur represented the second most abundant 
class with up to 98 and 94 SCCs, respectively. With over 

5000 chemical structures, the flavonoids display broad 
diversity and hence, a broad range of functional roles in 
relation to plant’s survival. They impart important roles 
in numerous plant physiology and ecology-related pro-
cesses such as seed and flower petal coloration, pollen 
germination, regulator of plant growth and protection 
against biotic and abiotic stressors.

Metabolites with high similarity scores are likely to be 
involved in similar biological functions [34, 35]. In gen-
eral, the overlapping clusters obtained in this study dis-
played a similar metabolite function [36]. Glucosinolate 
and sulphated flavonoid were distributed in most clus-
ters. In cluster 2, prototribestin (steroid saponin) showed 
structural similarity with terpenoid-type saponins such 
as sandrosaponin, tribestin and zygophyloside [49]. In 
cluster 23, tryptophan derivative compound (3-indolyl-
methylthiohydroximate) was clustered with indole 
phytoalexin compounds. Likewise, indole phytoalexin 
compounds such as cyclobrassinin and indole glucosi-
nolate, sinalbin A and sinalbin B were structurally similar. 
Metabolites in cluster 29, cluster 30 and cluster 40 were 
composed of SCCs derived from reaction steps involved 
in glucosinolate biosynthesis. As such, hexa-, penta- and 
tetra- homomethionine are Met derivatives involved 
in the initial step of glucosinolate side-chain elongation 
while isothiocyanate is the product of the glucosinolate 
degradation (Table 2).

Structural similarities between the following sulphated 
flavonoids were observed in cluster 13, cluster 14 and 
cluster 15: malvidin 3-glucoside-5-(2ʺ-sulfatoglucoside) 
(C00011343) and orientin 7-O-sulfate (C00006084). 
Sulphated flavonoids unique to eudicot and monocot 
were structurally similar (cluster: 12, 13, 14, and 15). In 
Angiosperms, flavonoids are the most ubiquitously pre-
sent natural products. Flavonoid sulfation is a conjuga-
tion reaction that utilizes sulfate group as donor and 
flavones, flavonols or their corresponding methyl esters 
as the acceptor molecules. The sulphated flavonoids are 
involved in reactive hydroxyl group detoxification, which 
directly contributes to the hydrophilicity of cellular com-
partment (solubility). Plants thriving in stressful envi-
ronment assume sulfate ion sequestration for ecological 
adaptation. The sulphated flavonoids are naturally pre-
sent in about 300 plant species comprised of eudicots 
and monocots [37, 38]. The findings corroborated with 
the present knowledge whereby nearing 50% representa-
tion of eudicot-monocot co-occurring metabolite pairs 
were all sulphated flavonoids. The distribution of SCCs 
were higher in the eudicots compared to monocots, and 
so does the structural diversity. The flavonoid containing 
overlapping clusters showed the most number of associa-
tions in the network, implying its broad spectrum func-
tional roles. The interaction between the eudicot and 

Fig. 6 Hierarchical clustering of Angiosperms based on the 
sulfur‑containing compound (SCC) content. A total of 50 metabolite 
clusters are divided into three main clades; Clade 1‑D, Clade 2‑D and 
Clade 3‑D/M. Red dotted line denotes the position of A. thaliana 
in the phylogenetic tree. Clades are represented along the type of 
plant species indicated as following: D eudicot, M monocot, and 
D/M eudicot and monocot. The enlarged version of each clade is 
presented in S Fig. 7
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monocot sulphated flavonoids suggests structural simi-
larities and/or probable polyphyletic origin among the 
plant species. Each cluster represents a distinct entity of 
highly connected structural similarity and thus, may have 
been involved in similar biological functions [39].

Large clusters are often associated with a broad range 
of biological functions, in contrast to small clusters that 
have narrow and specific functions [24, 25]. In this study, 
the pathway-oriented cluster mapping displayed associa-
tions between the chemical composition and biochemi-
cal pathway. Glucosinolate was uniformly distributed 
among the Clade 1 eudicots. They were mainly mem-
bers of the cabbage and mustard family (Brassicaceae), 
and others listed as the following: Erysimum (highest 
occurrence), Brassica, Lepidium, Cakile, Thelypodium, 
Wasabi, Alyssum, Cheiranthus, Malcomia, Eruca, Leav-
enworthia, Conringia, Iberis, Isatis, DiplotaxisLesquer-
ella, Cardamine and Arabidopsis. Others such as the 
Gynandropsis from clade 1 represented a higher taxa 
of the Brassicales order. Members of clade 2 were simi-
lar to clade 1 in terms of consistent containment of glu-
cosinolate compound. However, the eudicot members 
were comprised of several different families listed as 
the following genera: (i) Brassicaceae; Boechera, Arabis, 
Lunaria, Christoleaone, Sisymbrium, Thelypodium, Bras-
sica, Crambe, Coincya, Descurainia, Fibigia, Nasturtiop-
sis, Matthiola, Capsella, Draba, Coincya, Selenia, Peltaria, 
Rorippa, Raphanus, Schouwia, Diplotaxis, Moricandia, 
Zilla, Cardamine and others (ii) Tropaeolaceae; Tro-
paeolum, (iii) Moringaceae; Moringa, (iv) Capparaceae; 
Capparis, Cleome (uniformly distributed under a single 
sub-clade), and v) Gyrostemonaceae; Tersonia.

Conclusions
In this study, the chemoinformatics-driven phylogeny of 
Angiosperms showed parallel results with the traditional 
morphology-based classification to a great extent. Clade 
1 and clade 2 of eudicots were distantly related to clade 3 
of eudicot-monocot in combination. Glucosinolate com-
pound was distributed among the species in clade 1–2. 
Amongst the different classes of SCCs, glucosinolate was 
ranked as the most abundant class whereas the isothiocy-
anate and steroid emerged as the smallest class. The fla-
vonoids emerged as the second most abundant class after 
glucosinolate. Both glucosinolate and flavonoids have 
shown apparent structural diversity implicated in the 
trajectory of plant evolution driving the species chemo-
diversity. The first is important in plant defense response, 
adaptability, tolerance against stressors and cellular level 
physiobiochemical activities, whereas, the latter plays a 
fundamental role in growth and development, and physi-
ological processes.

Methods
Data collection and pre‑processing
Plant-specific sulfur-containing compounds (SCCs) were 
collected from KNApSAck Core DB and KNApSAck DB 
(https:// www. knaps ackfa mily. com/ knaps ack). A total of 
552 SCCs were identified from 692 plant species. Plants 
with less than two different SCCs were manually filtered 
out from the dataset. The corresponding.MOL files for 
all the identified metabolites were retrieved from the 
KNApSAcK Core DB. The SCCs were annotated via bib-
liomic search using the following databases: PubChem 
(https:// www. pubch em. ncbi. nlm. nih. gov) [40], KEGG 
(https:// www. genome. jp/) [41, 42] and Metlin (https:// 
www. scrip ps. edu) [43]. Figure 7 illustrates the schematic 
workflow of the method employed in this study.

Structural similarity analysis
The structural similarities of the identified SCCs were 
determined using the ChemmineR, an R-package, version 
2.30.2 [44]. The atom pair fingerprints of all SCCs were 
generated from the.MOL metabolite structure input files 
and the structural similarities between pairs of metabo-
lites were determined by Tanimoto coefficient. The Tani-
moto coefficient values range from 0–1 (with increased 
value, the stronger the structural similarity), whereby 0 
denotes no structural similarity and 1 indicates the high-
est similarity. The Tanimoto coefficient cut-off value was 
set at > 0.85 [45, 46]. All metabolite pairs were screened 
by Tanimoto coefficient and pairs that did not meet the 
cut-off value were filtered out from the metabolic net-
work construction input data [47]. The metabolite net-
work was visualized using Cytoscape software, version 
3.6.1 [48].

Sulfur‑containing compound (SCC) cluster
DPClusO graph clustering algorithm was used for the 
identification of overlapping clusters from the metabo-
lite network comprised of structurally similar SCCs 
pairs [49]. The parameters deployed in the algorithm for 
the cluster k are defined as follows: (i) cluster property 
( cpnk ), (ii) density ( dk ), (iii) ratio of the edges (|Ek |) and, 
(iv) maximum possible number of edges(|Ek |max) . The 
dk was calculated using |Ek |) and |Ek |max . Nk represents 
the number of nodes in cluster k. The Enk denotes the 
total number of edges between the node, n and the clus-
ter nodes [40]. The cluster property(cpnk ) of node (n) in 
cluster k is shown below:

cpnk =
|Enk |

dkx|Nk |

https://www.knapsackfamily.com/knapsack
https://www.pubchem.ncbi.nlm.nih.gov
https://www.genome.jp/
https://www.scripps.edu
https://www.scripps.edu
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The overlapping mode was set with the following clus-
ter property: cpnk = 0.5, dk = 0.7, and minimum cluster 
size = 2.

Metabolite content‑based hierarchical clustering
The correlation values between the species metabo-
lite content and groups of similar structure metabolites 
(SCCs) were stored in a matrix. Matrix (M) consists of 
two conditions:  Mik; k groups of similar structure metab-
olites and i number of species, and  Mjk; k groups of simi-
lar structure metabolites and j number of species. The 
Euclidean distances (d) calculated between two differ-
ent species (i and j) with n number of SCC clusters were 
fed into hierarchical clustering to infer the chemo-rela-
tionship among the species. When  Mik = 1, the species 
i contains at least one pair of metabolites with similar 
structures from group k, whereas  Mjk = 0 denotes an 
absence of a metabolite cluster in species j. The distance 
formula is expressed below:

The analysis was conducted using the hclust function 
from ChemmineR tool, an R library [44] and hierarchi-
cal clusters were visualized using the iTOL web server 
(https:// www. itol. embl. de) [40].

Pathway mapping
All SCCs identified in this study were converted to KEGG 
Ligand identifiers using the Hyperlink Management 
System and ID converter System (http:// biodb. jp/) [50, 
51]. Following conversion, the SCCs were mapped onto 
KEGG metabolic pathway using the KEGG Ligand data-
base (https:// www. genome. jp/ kegg/ ligand. html) [41, 42].
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Fig. 7 Schematic workflow for Angiosperms classification using 
sulfur containing compound (SCC) dataset. A The workflow is divided 
into three stages; (i) data collection and molecular fingerprinting 
of structural similarity based on Tanimoto score, (ii) clustering of 
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clustering. B Mathematical models supporting each stage described 
in (A)
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