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Abstract 

Background: Variety genuineness and purity are essential indices of maize seed quality that affect yield. However, 
detection methods for variety genuineness are time-consuming, expensive, require extensive training, or destroy the 
seeds in the process. Here, we present an accurate, high-throughput, cost-effective, and non-destructive method for 
screening variety genuineness that uses seed phenotype data with machine learning to distinguish between geneti-
cally and phenotypically similar seed varieties. Specifically, we obtained image data of seed morphology and hyper-
spectral reflectance for Jingke 968 and nine other closely-related varieties (non-Jingke 968). We then compared the 
robustness of three common machine learning algorithms in distinguishing these varieties based on the phenotypic 
imaging data.

Results: Our results showed that hyperspectral imaging (HSI) combined with a multilayer perceptron (MLP) or sup-
port vector machine (SVM) model could distinguish Jingke 968 from varieties that differed by as few as two loci, with 
a 99% or higher accuracy, while machine vision imaging provided  ~ 90% accuracy. Through model validation and 
updating with varieties not included in the training data, we developed a genuineness detection model for Jingke 
968 that effectively discriminated between genetically similar and distant varieties.

Conclusions: This strategy has potential for wide adoption in large-scale variety genuineness detection operations 
for internal quality control or governmental regulatory agencies, or for accelerating the breeding of new varieties. 
Besides, it could easily be extended to other target varieties and other crops.
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Background
Maize (Zea mays L.) is one of the most widely con-
sumed crops worldwide, and represents a major source 
of food, livestock feed, and industrial raw materials [1, 
2]. However, the recent, remarkable expansion of maize 
varieties has accompanied varietal infringement with 
inferior seeds or imitation varieties [3, 4]. In addition, 
lax control in seed production and processing has led 
to adulteration of commercial varieties and a decline 
in seed purity, for which had been reported that every 
1% reduction in seed purity would reduce maize yield 
by 3.7–5% [5, 6]. Detection of variety genuineness and 
purity is therefore critically important to farmers and 
seed producers alike. Routine methods such as screen-
ing seedling morphology, isoenzyme electrophoresis, 
or simple sequence repeat (SSR) detection have advan-
tages of high accuracy and reliability. Still, they also 
have disadvantages, such as being time-consuming, 
requiring highly specialized training, or being destruc-
tive to seeds [3, 7–9]. Exploring new appropriate strat-
egies is urgently needed to meet current demands for 
accurate, high-throughput, cost-effective, and non-
destructive detection of maize variety genuineness.

Machine vision is the most common and quickly 
adopted method for non-destructive testing of seed 
quality. It can classify seeds with different qualities by 
combining machine vision (typically RGB images) with 
machine learning algorithms that analyze the differ-
ences between seeds’ phenotypic features (i.e., shape, 
color, and texture) [10–16]. However, this method is 
limited in distinguishing seeds from genetically and 
phenotypically similar lines. Fortunately, high-through-
put phenotyping—hyperspectral imaging (HSI) may 
overcome this issue, which incorporates much spectral 
and spatial information simultaneously. This method 
can effectively differentiate and classify target objects 
or predict crop traits by detecting subtle differences 
in chemical composition and distribution [17–20]. 
Moreover, considerable evidence indicates that spec-
tral characteristics are genotype-specific and can be 
used to distinguish plant genotypes [21], suggesting the 
feasibility of identifying crop varieties by hyperspectral 
imaging [17, 22–26].

Both machine vision and HSI obtain large pheno-
typic datasets, which require efficient data processing 
and statistical analysis, leading to machine learning 
algorithms to handle image analysis. The most com-
mon machine learning algorithms, random forest 
(RF) and support vector machine (SVM), have been 

successfully applied to a range of classification tasks 
[27–32]. In addition, multi-layer perceptron (MLP) has 
been broadly used for modeling and prediction in agri-
cultural programs due to their high computational effi-
ciency and accuracy [32–35].

Previous studies reported successful non-destructive 
genuineness detection for target maize variety against 
regular commercial corn hybrids using machine vision 
with deep learning algorithms [3]. However, our further 
research found that this method was powerless against 
those genetically and phenotypically similar varieties. 
By combining RGB images and the VGG16 network, the 
established model was used to detect nine other geneti-
cally similar maize varieties of Jingke 968. The result indi-
cated that except for variety Jingke 665 and Jingke 968A 
with higher recognition accuracy, most of the remain-
ing seven varieties were incorrectly identified as Jingke 
968. Then the overall recognition accuracy was as low as 
34.4% (Fig. 1).

Hyperspectral image processing combined with 
machine learning algorithms has been used to classify 
the varieties of maize seeds according to differences in 
their chemical composition [26, 36–38]. More details 
for those varieties of classification tasks are shown in 
Table 1. Despite the success of this approach, these meth-
ods could only classify a limited variety of maize seeds, 
whereas discriminating between a large number of varie-
ties not used in the training set presented a challenge to 
the performance of these applications. Moreover, none of 
these studies applied HSI to detecting maize variety gen-
uineness. Consequently, we would turn this multivariate 
discriminant analysis-based classification method into 
a binary classification problem, that is, the detection of 
target variety and non-target varieties. The established 
model will still be effective for varieties other than the 
training set, and can identify and classify them as non-
target varieties. Therefore, the variety genuineness detec-
tion model can still be carried out to maintain the high 
purity of the target variety.

Here, we focused on Jingke 968, a predominant maize 
variety cultivated in China with high yield, desirable seed 
traits, multiple disease resistance, and wide environmen-
tal adaptability. Due to the high demand for Jingke 968 
seeds, screening for genuineness and purity represents 
a problematic and potentially labor-intensive task that 
requires accuracy in discriminating similar phenotypes, 
efficiency in handling high seed volume, and cost-effec-
tiveness relative to methods using expensive consuma-
bles [39].
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To this end, we explored models that could work in 
common hybrids while also efficiently eliminating varie-
ties genetically similar to that of the target variety. This 
strategy could also facilitate breeding programs for new 
varieties and resolve problems of variety adulteration. We 
obtained RGB and hyperspectral images from Jingke 968 
(abbreviation: JK 968) and genetically similar non-Jingke 

968 (abbreviation: non-JK 968) varieties and tested three 
machine learning algorithms for their ability to distin-
guish between varieties using only information extracted 
from these two image types. The specific objectives were 
as follows: (1) to establish a high-performance genu-
ineness detection model for distinguishing genetically 
similar maize varieties based on seed phenotype with 

Fig. 1 Variety genuineness detection result visualization. These nine genetically and phenotypically similar maize varieties (non-Jingke 968) of 
target variety Jingke 968 were tested using the model of Tu et al. [3] based on RGB images and the VGG16 network. Purple represents the detection 
result as non-Jingke 968. Blue means the detection result is Jingke 968

Table 1 Applications of hyperspectral imaging in maize seed variety classification tasks

Number of cultivars Varieties Application Result (%) References

4 normal maize hybrids Hangyunuo No.1, Suyunuo 14, Huyunuo No.1, and Yanhejin 2000 Variety identification 98.2 Yang et al. [36]

17 normal maize hybrids BNA 07, SNN 12, Bositian 8, Gumang 178, Huayu 11, Jizaojinxiangnuo, 
Jinnuowang, Jinsaitian, Jingketian 195, Lianyu 16, Nongda 108, Sida 
205, Wannuo 11, Xiangtiannianyumi, Yudan 998, Zhendan 958, and 
Zhongnongdatian 413

Variety identification 99.13 Xia et al. [37]

3 normal maize hybrids Nonghua 213, Yinyu 274, and Yinyu 439 Variety identification 76.25 Shao et al. [38]

4 common maize varieties 
and 4 silage maize varieties

Datian 387, Quchen 8, Quchen 11, and Quchen 13; Quchen9, 
Quchen19, Quchen29, and Quchen513

Variety identification ~ 98 Bai et al. [26]
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machine learning; (2) to compare machine vision and 
hyperspectral imaging for seed phenotype data collection 
to determine which imaging method is most appropri-
ate for genuineness detection; (3) to compare the accu-
racy of different variety genuineness detection models for 
varieties not included in training data; (4) to establish a 
method for updating models to improve their ability to 
distinguish varieties not included in training data.

Results
Less efficient models for detection of variety genuineness 
based on machine vision
In order to develop a reliable high-throughput method 
for sorting the target seed variety from maize seeds of 
other genetically and phenotypically similar varieties, we 
first tested phenotypic RGB images with different mod-
eling algorithms to evaluate their ability to distinguish 
image data of these two categories of maize kernels. As 
shown in Fig.  2, there is variability in seed appearance 
within and among JK968 seed lots, such as different 
sized JK 968-9 and smaller kernels in JK 968-2. Con-
versely, several genetically similar non-JK 968 varieties 
have a remarkably similar appearance to the target JK 

968 variety (e.g., JK 968D, JK 968C, JK 9683, JK 968G, JK 
9688, and JK 970). These similar varieties are thus indis-
tinguishable purely through visual inspection. To identify 
differences between varieties, we then extracted 54 fea-
tures, including shape, color, and texture features, from 
the germ and non-germ surfaces in the RGB image data 
of 315 JK 968 and 315 non-JK 968 maize seeds. Figure 3 
plots the probability density distributions of these fea-
tures from the germ surfaces of seeds. These features pri-
marily overlapped between the two categories, indicating 
that some of these features were not informative for dis-
tinguishing JK 968 from non-JK 968. More sophisticated 
analytical methods may be necessary to sort them accu-
rately. Furthermore, this confounding feature overlap was 
evident too in the probability density distribution plots 
of image data from non-germ seed surfaces (Additional 
file 1: Figure S1).

Using these features, we assembled three datasets that 
included imaging data from germ surfaces, non-germ 
surfaces, and a mixture of the two. Then these three 
datasets were used as inputs for the RF, SVM, and MLP 
network models and established genuineness detection 
models for JK 968 against genetically similar varieties 

Fig. 2 The germ and non-germ surfaces of maize seeds for different varieties. The top row represents nine seed lots of maize variety Jingke 968 
for the JK 968 category. The bottom row represents the other nine non-target varieties for the non-JK 968 category, which are genetically similar to 
Jingke 968 variety
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(Fig.  4). No significant differences were found in their 
detection performance, regardless of whether the data 
used in the input variables were obtained from the germ 
surface, the non-germ surface, or a mixture. However, 
we noted that the accuracy of the SVM and MLP mod-
els were both better than that of RF, although the over-
all accuracy remained low (i.e.,  ~ 90% accuracy for better 
models). These results thus indicated that machine vision 
image data alone was insufficient to establish an accurate 
and reliable model for genuineness detection for maize 
seeds, especially among highly genetically and phenotyp-
ically similar varieties.

High‑accuracy detection of variety genuineness 
by modeling HSI data
In order to improve the accuracy of genuineness detec-
tion for Jingke 968 seeds, we then explored whether 
VIS/NIR hyperspectral imaging could detect the sub-
tle differences in spectral reflectance related to differ-
ences in chemical composition between varieties. After 
filtering out the noise signal, 756 variables between 400 
and 1000  nm were retained as full wavelengths for use 
in subsequent analyses. The raw spectra of each maize 
seed’s germ and non-germ surfaces are shown in Fig. 5a, 
b. The spectral reflectance for all maize seeds was less 

Fig. 3 The probability density distributions of 54 features for JK 968 and non-JK 968, extracted from the seed germ surface
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than 0.8, and the different varieties showed similar lev-
els of variability within lots (Fig.  5c, d). However, some 
spectral curves differed between JK 968 and non-JK 968 
seeds (about 700–1000 nm), while the spectral curves for 
the remaining wavelengths showed substantial overlap 
between varieties (especially 400–600  nm). This result 
thus showed that distinguishing between these geneti-
cally similar varieties with spectral data still presented 
difficulties for accuracy and efficiency.

We subsequently used the RF, SVM, and MLP algo-
rithms to establish discriminant analysis models based 
on the 756 spectral bands of the germ surfaces, non-germ 
surfaces, and a mixture of the two. The results of test sets 
for each model showed apparent differences in accuracy 

between models, with the SVM and MLP models (both 
with the accuracy of mixture data-based model over 
99%) performing significantly better than the RF model 
(accuracy lower than 90%) (Fig.  6). Notably, the MLP 
and SVM models showed comparably high accuracy in 
distinguishing varieties, with overall accuracy reaching 
approximately 100% in test sets. Similarly, we identified 
no significant differences in detection accuracy among 
the germ surface, the non-germ surface, or mixed dataset 
inputs.

To reduce the computational burden, the wavelength 
selection algorithm, SPA, was applied to select the most 
informative spectral features (i.e., wavelengths) (Table 2). 
For the germ surface, the non-germ surface, and the 

Fig. 4 Confusion matrix of model detection results in the test set using machine vision information. The RF, SVM, and MLP models are presented in 
columns from left to right, respectively. Each row from top to bottom represents models developed using germ surface features, non-germ surface 
features, and a mixture of germ and non-germ features. The percentages in the lower right corners indicate the accuracy of each test set
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mixed data set, 9, 11, and 10 wavelengths were selected. 
Then, these characteristic wavelengths were used to build 
detection models with the RF, SVM, and MLP algorithms 
(Fig.  7). Comparisons between algorithms revealed that 
SVM and MLP-based models showed consistently high 
accuracy, stabilizing at  ~ 99%, with no significant differ-
ences in performance between germ surface, the non-
germ surface, and mixed data inputs. Based on these 
results, both SVM and MLP with mixed seed surface data 
were selected as the best models for detecting genuine-
ness, regardless of whether input data included full spec-
tra or only characteristic wavelengths.

Verification and update of the selected genuineness 
detection model based on HSI
In order to test the practicability and generalization 
of the SVM or MLP-based HSI mixed surface data 

models, we chose several common maize hybrids not 
used for model training to verify their performance. To 
this end, seventy JK 968 grains from two seed lots and 
350 seeds from ten non-JK 968 common maize hybrids 
were selected for genuineness detection using either 
full spectra or ten effective wavelengths. As shown in 
Fig.  8, the results showed greater than 98% detection 
accuracy for JK 968 using either full spectra or ten 
features. However, among the ten non-JK 968 varie-
ties not used for modeling training, the identification 
accuracy was higher for some (e.g., DY 830 and ND 87) 
but extremely low for others (e.g., LP 208, XY 335, LS 
988, and others). Subsequently, we updated the MLP-
mixed HSI model through an active learning strategy. 
The spectral information from varieties with recogni-
tion accuracy lower than 60% was added to the training 
data.

Fig. 5 Raw spectra of JK 968 and non-JK 968 maize seeds obtained by the hyperspectral imaging system. a, b Spectra of individual maize seeds 
collected from germ or non-germ surfaces (Five grains were randomly selected from each seed lot or variety to show the distribution clearly). c, d 
Average spectra of every JK 968 seed lot and non-JK 968 variety obtained from the germ or non-germ surfaces
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First, LP 208 was chosen for model updating. Then, 
the updated model was used to discriminate JK 
968 seeds from those of the nine remaining non-JK 
968 varieties. The results showed that the recogni-
tion accuracies for XY 335, LS 988, LP 275, ZD 958, 
QL 368, LP 602, and ZD 1002 were improved by 5.7, 

2.9, 8.8, 40, 20, 20, and 14.3%, respectively, following 
the first update, while the DY 830 and ND 87 detec-
tion remained at 100% (Fig.  8). Next, XY 335 and LS 
988 were randomly selected from the varieties with 
recognition accuracy that remained lower than 60% 
after the first update. Their mixed HSI surface data 

Fig. 6 Confusion matrix of detection accuracy for models using hyperspectral reflectance data. RF, SVM, and MLP models are presented in columns 
from left to right. Each row from top to bottom represents models developed using reflectance of the germ surface, non-germ surface, or a mixture 
of germ and non-germ surfaces. The percentages in the lower right corners indicate the accuracy

Table 2 Characteristic wavelength selected using SPA

Spectral data sources Effective wavelengths (nm)

Germ surface 405.5, 407.8, 409.2, 410.7, 414.4, 421.1, 454.7, 693.3, 919.0

Non-germ surface 404.8, 407.0, 407. 8, 409.2, 410.7, 412.2, 421.1, 488.7, 607. 5, 691.8, 919.0

Mixed surface data 401.8, 405.5, 407.8, 409.2, 410.7, 420.3, 492.5, 576.3, 817.8, 935.0
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were added to the training data for the second and 
third model updates, respectively. Detection assays 
indicated that recognition accuracy again substan-
tially improved for the other varieties, especially in the 
model based on full HSI spectra. Ultimately, the aver-
age recognition accuracy of the full spectrum model 
was improved to 99.7%, while the model’s accuracy of 
using characteristic wavelengths increased to 93.0%, 
showing improvements of 36.6% and 45.1% over that of 
the original model, respectively. The model based on 
the SVM algorithm presented almost the same pattern 
(Fig. 9), for the average recognition accuracy of the full 

spectrum model was increased from 59.3 to 99.4%, and 
that using characteristic wavelengths raised from 58.8 
to 90.5%, with improvements of 40.1% and 31.7% over 
that of the original model, respectively.

Taken together, these results indicated that the SVM 
or MLP-based genuineness detection model using full 
HSI spectra could exhibit the highest performance. 
They could distinguish between highly phenotypically 
similar seeds from genetically close cultivars. Still, 
they could also be extended (through relatively simple 
updates) to recognize common hybrids not included in 
training data with over 99% accuracy.

Fig. 7 Confusion matrix of model detection results using characteristic features identified by SPA preprocessing. RF, SVM, and MLP machine 
learning models are respectively presented in columns from left to right. Each row from top to bottom represents models developed using 
reflectance values of the germ surface, non-germ surface, or a mixture of surface data. The percentages in the lower right corners indicate the 
detection accuracy in the test set
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Discussion
In recent years, infringement and adulteration of maize 
varieties have been a frequent occurrence, influencing 
the grain yield. Therefore, it is essential to detect the vari-
ety genuineness and purity. Given some shortcomings of 
traditional detection methods, we intended to explore an 
appropriate modeling strategy based on seed phenotype 
and machine learning, to meet the urgently current needs 
for accurate, high-throughput, cost-effective, and non-
destructive detection of maize variety genuineness.

It is well known that seeds of the same variety may 
exhibit phenotypic differences due to storage condi-
tions, cultivation year, and environmental conditions, 
which can confound the recognition of target varie-
ties and further affect the model’s accuracy [2]. There-
fore, we collected as many seed lots of target varieties 
as possible to ensure the generalizability of the models 
tested here. Moreover, it is challenging to detect only 

one specific side of seeds. To address these issues, we 
analyzed separate and mixed data from the germ and 
non-germ surfaces and found no significant difference 
in recognition accuracy. Hence, phenotypic data can 
be obtained randomly from any seed surface, improv-
ing the operation time and efficiency, consistent with 
the conclusion of Tu et al. [3]. When tested with geneti-
cally similar varieties, machine vision combined with 
machine learning algorithms showed apparently low 
accuracy, and failed to meet the variety genuineness 
and purity testing requirements. We also tested the 
method of Tu et  al. [3], which directly used the seed 
images as input for the VGG16 network to distin-
guish between JK 968 and non-JK 968 seeds. Unfortu-
nately, the detection accuracy was as low as 60% due 
to the highly similar seed morphology in RGB images 
between the target JK 968 and several genetically simi-
lar varieties.

Fig. 8 Increased recognition accuracy for JK 968 and several non-JK968 varieties through model updating. The MLP-based HSI mixed surface 
data genuineness detection model. a Histogram showing the recognition accuracy of all non-JK 968 varieties after each model update with 
full-spectrum hyperspectral reflectance data. b Histogram showing the recognition accuracy of all non-JK 968 varieties after each model update 
with characteristic wavelengths selected by SPA preprocessing. c Histogram of recognition accuracy for JK 968 and non-JK 968 seeds after model 
update with full hyperspectral reflectance data. d Histogram of the recognition accuracy of JK 968 and non-JK 968 seeds following each model 
update with characteristic wavelengths selected by SPA preprocessing. The numbers above each pair of columns represent the average detection 
accuracy for the model
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Hyperspectral imaging, which can reflect subtle differ-
ences in the chemical composition of seeds from geneti-
cally similar varieties, was then used to establish a highly 
accurate detection model for variety genuineness. Differ-
ences in spectral information among different varieties at 
the same wavelength were similar in this study to those 
in previous reports [18, 37]. In particular, the reflectance 
values were not the same between different varieties, 
although the spectral curves of these different varieties 
showed the same trend [40]. For maize seeds, the absorb-
ance of the spectra at 400–500 nm is proportional to pro-
tein content, whereas the absorption peak between 500 
and 750  nm is mainly attributable to the abundance of 
starches, oils, and other chemical compounds [41]. The 

peak near 980  nm was shown to be the central absorp-
tion wavelength for the second overtone of O–H stretch-
ing, caused by the presence of water and carbohydrates 
[42]. The presence of similarities or differences in starch 
content, carbohydrates, and other components thus form 
a reliable basis for using hyperspectral imaging to distin-
guish different maize varieties [2, 37].

However, it should be noted that HSI spectra frequently 
overlap due to similarities in the composition of the seed 
epidermis. To resolve this issue, it was necessary to estab-
lish discriminant analysis models that fully exploit the 
available spectral variables to classify target seeds from 
those of other varieties. Besides, it is widely known that 
the similarities among varieties will affect classifiers’ 

Fig. 9 Increased recognition accuracy for varieties through model updating. The SVM-based HSI mixed surface data genuineness detection model. 
a Histogram showing the recognition accuracy of all non-JK 968 varieties after each model update with full-spectrum hyperspectral reflectance 
data. b Histogram showing the recognition accuracy of all non-JK 968 varieties after each model update with characteristic wavelengths selected 
by SPA preprocessing. c Histogram of recognition accuracy for JK 968 and non-JK 968 seeds after model update with full hyperspectral reflectance 
data. d Histogram of the recognition accuracy of JK 968 and non-JK 968 seeds following each model update with characteristic wavelengths 
selected by SPA preprocessing. The numbers above each pair of columns represent the average detection accuracy for the model
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performance [43]. In this study, the genuineness detec-
tion model based on SVM or MLP with full HSI wave-
length data showed accuracy as high as 99% in sorting 
complex samples, including several JK 968 seed lots from 
different conditions and seeds of several other varie-
ties genetically similar to JK 968. This accuracy reflects 
the advantages of hyperspectral data compared to that 
obtained by machine vision. The main advantage of RGB 
is a lower cost instrument system and faster image acqui-
sition, compared with HSI. However, HSI offers hundreds 
or thousands of spectral bands rather than the reflec-
tance in 3 spectral regions (Red, Green, and Blue), and 
thus contains more information on samples to improve 
discrimination performance [43, 44]. It should also be 
noted that real-time detection of maize seeds using full 
wavelength data remains challenging, owing to limita-
tions in the speed of HSI data acquisition and processing 
[37]. Therefore, building a robust model based on a small 
number of characteristic features is necessary to reduce 
the related costs and prediction time [45]. After selecting 
a limited set of characteristic wavelengths using the SPA 
algorithm, HSI-based models still performed better than 
machine vision-based models by detecting informative 
peaks that indicate differences in starch, protein, water, 
and other components.

When tested with untrained samples, a well-established 
model with reliable performance is still expected to lose 
its effectiveness. To accommodate these samples, model 
updating is essential. We found that the addition of sev-
eral untested varieties with low recognition accuracy to 
the training data greatly enhanced model performance 
in recognizing other untested varieties. Expanding the 
samples used to train the original model with seeds from 
the lowest accuracy samples can enable rapid updating of 
the model. It resulted in improved stability and adaptabil-
ity (and consistently high performance) in recognizing a 
more comprehensive range of seed lots or varieties than 
in the original training data. We also found that with an 
increase in common hybrid varieties, the performance of 
the SVM or MLP model using full wavelength data per-
formed significantly better than that using characteristic 
feature wavelengths. As shown in the study of Yang et al. 
[46], the prediction accuracy of sugarbeet seeds SVM 
model based on 16 characteristic wavelengths reduced 
by 3.18% than that of full wavelength. This difference in 
performance could be related to the selection of feature 
wavelengths from the original training data, which could 
overlook informative wavelengths needed to discern 
other varieties [24, 47]. Consequently, whether to use 
an algorithm such as SPA to select characteristic wave-
lengths should consider the actual application situation, 
which depends on the processing power of the computer, 
as well as the trade-off between the accuracy, rapidity, 

and generalization of the detection model. After all, the 
high-performance computer may significantly increase 
the related budgets.

Previous studies have researched the non-destructive 
identification of seed varieties based on hyperspectral 
imaging and machine learning or deep learning [4, 9, 17, 
18, 24–26, 48, 49]. Although there might be a certain dis-
tance from the actual application due to a limited num-
ber of varieties in the training set, the successes of these 
studies guide the seed variety genuineness detection to 
ensure seed purity. These studies show that the SVM and 
deep learning models are effective algorithms for pro-
cessing large phenotypic spectral datasets. Even though 
the convolutional neural network (CNN) performs 
slightly better than the SVM in some cases, their overall 
performances are very close [49]. So, we chose the tradi-
tional machine learning algorithms (SVM, MLP, and RF) 
and got detection accuracy above 99% (SVM and MLP) 
that can be widely adopted, especially in resource-limited 
agricultural settings. Usually, the discrimination result 
declined with the increase in the number of seed varie-
ties. When seed varieties increased from two to four, the 
final discrimination accuracy of the SVM model dropped 
from 95.67 to 92.56% [48]. Consequently, we would turn 
this multivariate discriminant analysis-based classifica-
tion method into a binary classification problem: the 
detection of target variety and non-target varieties. It can 
effectively deal with more varieties within or outside the 
training dataset, meanwhile maintaining high accuracy.

This novel strategy for rapidly detecting maize vari-
ety genuineness, which combines seed phenotype with 
machine learning algorithms, thus provided encouraging 
results for discriminating seeds from complex samples 
with highly similar varieties. RGB imaging coupled with 
deep learning enabled the detection of Jingke 968 genu-
ineness in samples containing other normal corn hybrids, 
but phenotypically and genetically distant (that is, rela-
tively easy) [3]. Furthermore, this current study shows 
the capacity for distinguishing Jingke 968 seeds in com-
plex samples containing highly genetically similar varie-
ties (i.e., varieties differing at only two loci) by integrating 
HSI data with SVM and MLP modeling. In addition, our 
research group is currently advancing this method by 
developing an intelligent and automatic variety genuine-
ness detection system. It is currently in the testing stage 
and is expected to be used in the high-throughput online 
seed detection and selection system.

Conclusion
In conclusion, limitations in the current methods for 
detecting variety genuineness have prevented automation 
and high-throughput identification of seed purity. This 
study represents, to our knowledge, the first description 
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of a method for variety genuineness detection based on 
SVM or MLP modeling with hyperspectral imaging data. 
Our results indicate that this method is a rapid, highly 
accurate, and non-destructive tool for sorting seeds of 
a specific variety from those of other, highly genetically 
similar varieties. In particular, this model showed as 
high as 99% accuracy in discriminating between seeds 
from maize varieties differing at only 2–10 out of 40 SSR 
detection loci. In addition, genuineness detection using 
full wavelength data provided the highest accuracy of 
the models tested here, in samples containing genetically 
similar seeds or common hybrids not used in the training 
samples.

Moreover, the model shows extensive adaptability, and 
can be updated to accommodate varieties outside of the 
original training set through an active learning strat-
egy. Based on its advantages of high accuracy and non-
destructive imaging, this approach could have a wide 
range of applications in seed purity testing, seed genotyp-
ing, and intellectual property protection, as well as ensur-
ing that the expected varieties are indeed deployed in the 
field. This approach can also be broadly applied to other 
crops for phenotypic correlation analyses to accelerate 
plant breeding programs via non-destructive testing.

Methods
Experimental samples
There were two maize seed groups, ‘JK 968’ and ‘non-
JK 968’. For the JK 968 category, the target variety Jingke 

968 contained nine seed lots from different years and 
producing areas, provided by several seed companies. 
The details of Jingke 968 seed lots were showed in Addi-
tional file 1: Table S1. Nine genetically and phenotypically 
similar non-target varieties, provided by Maize Research 
Center, Beijing Academy of Agriculture and Forestry Sci-
ences, the breeding institution of maize variety ’Jingke 
968’, were considered non-JK 968 category. According to 
the SSR-based detection standard in China, they differ 
from Jingke 968 variety at as few as two to ten loci in 40 
detection loci. Because these precious breeding materi-
als were in limited quantities, and to solve the imbalance 
problem of samples, thirty-five maize seeds were selected 
from each Jingke 968 seed lot or non-Jingke 968 variety, 
so there were 315 seeds in each category. The details are 
shown in Table 3. Subsequently, Fig. 2 shows an overview 
of different maize varieties by scanned seed images.

Furthermore, seventy JK 968 grains and 350 seeds from 
ten common maize hybrids (non-JK 968) were randomly 
selected, from seed lots that did not participate in the 
model training, to verify the JK 968 genuineness detec-
tion model. The details for those seeds are shown in 
Table 4. All seeds were dried to about 10.0% of moisture 
content and stored at room temperature (25 ℃, RH 30%).

Phenotypic evaluations
RGB image acquisition and feature extraction
For all seed samples imaged directly, no precondition-
ing is required. In the machine vision part, the scanner 

Table 3 Numbers of seeds included in training data of nine different Jingke 968 seed lots and nine non-Jingke 968 varieties

Category Variety Year Abbreviation Number of different loci (Detected 
in 40 SSR loci)

Number 
of seeds

JK 968 Jingke 968 2019 JK968-1 / 35

Jingke 968 2019 JK968-2 / 35

Jingke 968 2020 JK968-3 / 35

Jingke 968 2020 JK968-4 / 35

Jingke 968 2020 JK968-5 / 35

Jingke 968 2020 JK968-6 / 35

Jingke 968 2020 JK968-7 / 35

Jingke 968 2020 JK968-8 / 35

Jingke 968 2020 JK968-9 / 35

Non-JK 968 Jingke 665 2016 JK665 2 35

Jingke 968D 2020 JK968D 3 35

Jingke 968A 2018 JK968A 5 35

Jingke 968C 2020 JK968C 5 35

Jingke 9683 2018 JK9683 7 35

Jingke 968G 2020 JK968G 8 35

Jingke 9688 2018 JK9688 8 35

Jingke 679 2019 JK679 8 35

Jingke 970 2018 JK970 10 35
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(Microtek scanmaker i360) with a CCD camera was 
used to obtain scanned images from maize seeds’ germ 
and non-germ surfaces. Tagged image file format (TIFF) 
images for the R, G, and B color channels were saved, 
measuring 2297 × 3381 pixels (h × w), and with a reso-
lution of 300 dpi. To simplify the operation process and 
improve the efficiency of obtaining images, we scan hun-
dreds of seeds simultaneously, but to ensure that the seed 
samples do not touch each other.

Six hundred thirty images of germ and non-germ sur-
faces were obtained from seeds in both the JK 968 and 
non-JK 968 categories. A total of 54 color, shape, and 
texture features for a single seed were extracted using 
Phenoseed (a software program developed by our lab 
and Nanjing AgriBrain Big Data Technology Co, Ltd.). 
The dataset of two categories was randomly divided into 
the training set and test set at the ratio of 3:1, to build a 
model with excellent generalization and robustness [50].

Hyperspectral reflectance data collection
In the hyperspectral imaging portion, we focused on the 
visible (VIS) and near-infrared (NIR) spectral reflectance 
bands. Each maize seed’s hyperspectral image was col-
lected using a proto-type VIS/NIR hyperspectral imag-
ing system with the wavelength range of 311–1090  nm, 
installed at the Beijing Key Laboratory of Crop Genetic 
Improvement, China Agricultural University. A detailed 
description of the whole system and parameters was 
available in the article of Zhang et al. [47]. All the hyper-
spectral image calibration and reflectance data extraction 
were then implemented by the HSI Analyzer software 
(Isuzu Optics Corp, Hsinchu, Taiwan, China).

Since the reflectance bands at both ends of the hyper-
spectral reflectance spectrum are significantly impacted 
by stochastic noise, 311–400  nm and 1000–1090  nm 

were removed from the original data. The process of 
spectral reflectance extraction is presented in Additional 
file 1: Figure S2. Every spectral curve represents the aver-
age reflectance of one maize seed. Consequently, 765 
reflectance data between 400 and 1000 nm of each seed 
were considered input variables in further analysis. The 
ratio of the training set and test set was also set to 3:1.

There are high-dimensional data and much redundant 
information in the hyperspectral image. Dimensional-
ity reduction and finding characteristic wavelengths are 
effective methods for hyperspectral data processing [18]. 
Therefore, applying the variable selection method to the 
analysis and processing of hyperspectral data is meaning-
ful. One common way to select variables is the successive 
projections algorithm (SPA) approach, selecting several 
typical characteristic wavelengths that predict the output, 
without mathematical transformations on the raw reflec-
tance data [18]. As a forward selection method, SPA is 
based on the principle of root mean square error (RMSE) 
minimization [46, 51]. It selects the variable with the low-
est collinearity and redundancy. This study chose SPA 
to select a few sensitive wavelengths with smaller RMSE 
as characteristic wavelengths, through multiple linear 
regression analysis of full wavelength for maize seeds.

Data‑driven modeling
As shown in Fig.  10, random forest (RF), support vec-
tor machine (SVM), and multi-layer perceptron (MLP) 
were chosen and used for detecting seed genuineness 
of maize variety JK968, which were the most commonly 
used algorithms in previous studies [21, 52–56]. RF uses 
the decision tree as the base classifier to resample the 
same data set and establish multiple similar base classi-
fiers. The classification prediction results of these base 
classifiers with slight differences can output the overall 
classification results by using integration methods such 
as averaging or voting [46]. This study used the RBF ker-
nel to construct a nonlinear SVM model in the spectral 
analysis [17, 51]. It carried out the five-fold cross-vali-
dation operation and grid search program to calculate 
optimal penalty coefficient c and the kernel parameter g. 
The searching range was both set to − 10 to 10 with the 
step of 0.2. For the MLP network, we selected the sig-
moid transfer function in the hidden layer and adopted 
the softmax activation function for the output layer, to 
achieve a binary classification task of variety genuineness.

Model verify and update
It was proved that updating the training set was an 
effective method for model updating, improving the 
performance of developed models [2]. To increase the 
generalization of the genuineness detection model, we 
would update the model through an active learning 

Table 4 External verification sample arrangement

Category Variety Year Abbreviation Number 
of seeds

JK 968 Jingke 968 2020 JK 968 35

Jingke 968 2020 JK 968 35

Non-JK 968 Longping 208 2017 LP 208 35

Longping 275 2017 LP 275 35

Longping 602 2017 LP 602 35

Zhengdan 958 2017 ZD 958 35

Zhengdan 1002 2017 ZD 1002 35

Qiule 368 2017 QL 368 35

Xianyu 335 2017 XY 335 35

Lianshu 988 2017 LS 988 35

Dingyou 830 2017 DY 830 35

Nongda 87 2017 ND 87 35
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strategy. The spectral information from varieties with 
recognition accuracy lower than 60% was added to 
the training data. Then, the updated model was used 
to detect the remaining external verification samples. 
The next variety with low recognition accuracy would 
be added to the training set for another update until 
the overall detection accuracy for external verification 
was improved to about 99%. Several varieties with reli-
able labeled as representative samples were extended to 
the original training set to increase the representative-
ness of the training set, which thus could significantly 
improve the model performance, reducing time and 
cost consumption.

Analyzing
The SPA pretreatment, RF modeling, and SVM modeling 
were realized in Matlab (R2019a, The MathWorks, Inc.). 
The MLP modeling process was implemented efficiently 
in IBM SPSS Statistics 25. Training set and test set data 
were randomly split for every training with a ratio of 3:1. 
All the relevant parameters in each machine learning 
algorithm are optimized according to the input variables. 
The accuracy of the test set (the average of ten runs for 
each model) was selected as the evaluation indicator of 
the qualitative model. The OriginPro 2021 software and 
the ggplot 2 packages in the R 3.6.1 were used to visualize 
the results.
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13007- 022- 00918-7.

Additional file 1: Figure S1. The probability density distributions of 54 
features for JK 968 and non-JK 968, extracted from the non-germ surface. 
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the maize seeds from the HSI Analyzer software. Step b a binary mask, 
which only contains seeds with zero values for background, was acquired 
by threshold segmentation. Step c: the true regions of maize seeds 
from the image of 765 bands (400–100 nm) were segmented by the 
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