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Abstract 

Background: Anthracnose of Camellia oleifera is a very destructive disease that commonly occurs in the Camellia 
oleifera industry, which severely restricts the development of the Camellia oleifera industry. In the early stage of the 
Camellia oleifera suffering from anthracnose, only the diseased parts of the tree need to be repaired in time. With the 
aggravation of the disease, the diseased branches need to be eradicated, and severely diseased plants should be cut 
down in time. At present, aiming at the problems of complex experiments and low accuracy in detecting the degree 
of anthracnose of Camellia oleifera, a method is proposed to detect the degree of anthracnose of Camellia oleifera 
leaves by using terahertz spectroscopy (THz) combined with laser‑induced breakdown spectroscopy (LIBS), so as to 
realize the rapid, efficient, non‑destructive and high‑precision determination of the degree of anthracnose of Camellia 
oleifera.

Results: Mn, Ca, Ca II, Fe and other elements in the LIBS spectrum of healthy and infected Camellia oleifera leaves 
with different degrees of anthracnose are significantly different, and the Terahertz absorption spectra of healthy 
Camellia oleifera leaves, and Camellia oleifera leaves with different degrees of anthracnose there are also significant 
differences. Partial least squares discriminant analysis (PLS‑DA), support vector machine (SVM), and linear discriminant 
analysis (LDA) are used to establish the fusion spectrum anthracnose classification model of Camellia oleifera. Among 
them, the Root mean square error of prediction (RMSEP) and the prediction determination coefficient  R2p of THz‑LIBS‑
CARS‑PLS‑DA of prediction set are 0.110 and 0.995 respectively, and the misjudgment rate is 1.03%; The accuracy of 
the modeling set of THz (CARS)‑LIBS (CARS)‑SVM is 100%, and the accuracy of prediction set is 100%, after preprocess‑
ing of the multivariate scattering correction (MSC), the accuracy of the THz‑LIBS‑MSC‑CARS modeling set is 100%, and 
the accuracy of prediction set is 100%; The accuracy rate of THz‑LIBS‑MSC‑CARS‑LDA of modeling set is 98.98%, and 
the accuracy rate of the prediction set is 96.87%.

Conclusion: The experimental results show that: the SVM model has higher qualitative analysis accuracy and is more 
stable than the PLS‑DA and LDA models. The results showed that: the THz spectrum combined with the LIBS spec‑
trum could be used to separate healthy Camellia oleifera leaves from various grades of anthracnose Camellia oleifera 
leaves non‑destructively, quickly and accurately.
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Background
Camellia oleifera is known as the four largest woody oil 
plants globally. It mainly grows in the south of China; it 
is a kind of pure natural high-grade oil peculiar to our 
country and has good economic benefits. In recent years, 
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the plantation area of Camellia oleifera has continued 
to expand, and the Camellia oleifera industry has also 
driven the local economy. However, with the expansion of 
the planting area, the diseases and insect pests of Camel-
lia oleifera have become more and more serious, which 
not only affects the development of the Camellia oleif-
era industry and the economic benefits of the planting 
land but also poses new problems for the prevention and 
elimination of diseases and insect pests of the Camellia 
oleifera. Camellia anthracnose is the primary disease of 
Camellia oleifera, and the disease is extremely destruc-
tive. In severe cases, it can cause the Camellia oleifera to 
lose flowers and fruits, dry branches and die, and finally, 
the whole plant decays; it is mainly common in Hunan, 
Jiangxi, Guangdong, and other provinces that are in the 
central distribution area of Camellia in China [1]. In the 
early stage of the disease, the diseased parts of the tree 
should be repaired in time. As the condition worsens, 
the diseased branches of the tree should be eradicated in 
time. The seriously diseased trees must be cut down in 
time.

At present, there are two major aspects to detect plant 
diseases [2]. One is laboratory testing techniques, Shuai 
Xiao-chun [3], etc. through tissue separation method to 
isolate and purify pathogens at the junction of disease 
and health, and seven typical anthracnose fungi were 
identified by morphological methods; P. Parikka et al. [4] 
used conventional polymerase chain reaction (PCR) tech-
nology to detect early spore anthracnose of strawberry 
tissue; Liu Yan-de et al. [5] used flame atomic absorption 
spectrometry (FAAS) to detect the degree of anthrac-
nose of Camellia oleifera. Although these detection tech-
niques have high precision, the experimental processing 
process is very cumbersome, and many requirements are 
required for the experimenters, which will cause second-
ary pollution. The other aspect is the spectrum detec-
tion, and image texture detection, such as Wu Nan [6], 
etc. analyzed the visible-near infrared spectrum charac-
teristics of the Camellia canopy after anthracnose infec-
tion by BP neural network model, and the anthracnose 
of the Camellia leaf is successfully detected; Wang Xian-
feng et al. [7] performed image processing on the images 
of diseased leaves, and cucumber leaf downy mildew, 
brown spot, and anthracnose were successfully identified 
by the statistical analysis system (SAS). Although spec-
tral detection and image detection are simpler and faster 
than laboratory detection, however, it is seldom detected 
in the grade of plant disease. Therefore, it is necessary to 
find a fast, efficient, simple, and high-precision detection 
method to detect plant diseases.

Laser-induced breakdown spectroscopy (LIBS) is 
an elemental analysis technology based on atomic 
emission spectroscopy and laser-plasma emission 

spectroscopy. The LIBS experimental method is sim-
ple, and it is a fast, direct, and multi-element analysis 
technology. In recent years, it has been widely used in 
plant element analysis [8]. Wang et  al. [9] used laser-
induced breakdown spectroscopy(LIBS) combined with 
discrimination analysis (DA) technology to successfully 
identify six types of tea; Denilson M et  al. [10] used 
LIBS technology to detect trace and macro-element of 
vegetables; Zhao Shang-yong et al. [11] detected six dif-
ferent ginseng by LIBS and successfully distinguished 
six types of ginseng. These studies mainly use LIBS to 
detect the properties of elements to identify and clas-
sify samples, which prove that LIBS can identify and 
classify samples according to different element contents 
in samples. This paper mainly studies the classifica-
tion accuracy of different grades of Camellia oleifera 
anthracnose. After Camellia oleifera is diseased, the 
contents of nutrient elements such as Fe and Mn will 
change. According to the spectral changes detected 
by LIBS, the changes of nutrients inside the leaves are 
determined, finally, the LIBS spectral data are used to 
model the determination of Camellia oleifera anthrac-
nose grades. LIBS technology can detect plant elements 
but cannot detect macromolecular substances, while 
Terahertz (THz) technology can detect macromolecu-
lar substances. The THz spectrum refers to electromag-
netic waves with a frequency between 0.1 and 10THz. 
It has the dual characteristics of microwave and infra-
red. Due to the weak interaction between most organic 
macromolecules in the matter, skeleton vibration, 
dipole rotation, and vibration transition frequency cor-
respond to the Terahertz spectrum, which makes the 
Terahertz technology has great potential in the appli-
cation of food adulteration detection [12, 13]. Li et  al. 
[14] used THz spectral technology to identify green tea 
from four different origins. Liu Yan-de et  al. [15] ana-
lyzed the Terahertz spectrum of purple rice and dyed 
purple rice in the range of 0.5–2.5THz through tera-
hertz spectrum technology, and purple rice and dyed 
purple rice were distinguished. Terahertz detection is 
mainly based on the characteristics of the fingerprint 
spectrum to identify the chemical components in the 
samples to classify the samples, which is in line with 
the direction and purpose of this research. Therefore, 
this research decided to use terahertz technology to 
detect the level of Camellia anthracnose.

Aiming at the current methods for detecting the degree 
of anthracnose of Camellia oleifera have disadvantages, 
such as complexity, low efficiency, environmental pollu-
tion, and low accuracy. As the complementary of LIBS 
and THz, in order to further improve the detection 
accuracy of Camellia anthracnose, the combination of 
LIBS and THz with chemometric methods is proposed 
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to achieve non-destructive, fast, efficient, and high-pre-
cision detection the degree of anthracnose of Camellia 
oleifera in the paper.

Methods
Sample preparation
The experimental samples used in this study are healthy 
Camellia oleifera leaves and anthracnose of Camellia 
oleifera leaves picked in the Camellia oleifera planting 
area in Nanchang, Jiangxi. The Camellia oleifera leaves 
were classified and pretreated by morphological, and 
PCR techniques and used as subsequent experimental 
samples. Five different types of Camellia oleifera leaves 
are picked, respectively. There are 110, 100, 110, 110, 
and 170 samples of mild, mild to moderate, moderate, 
and severe anthracnose of Camellia oleifera samples and 
healthy Camellia oleifera leaves, respectively. It is com-
posed of anthracnose of Camellia oleifera leaves with 
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different proportions of the black-brown diseased area 
to the total leaf area. Among them, leaves with anthrac-
nose lesion areas less than 1/4 on Camellia leaves are 
called mild anthracnose oil-tea leaves. Those with lesion 
area less than 1/2 and greater than 1/4 are called mild-
to-moderate anthracnose oil-tea leaves. The lesion area is 
greater than 1/2 less than 3/4 are called moderately oleif-
era leaves, and those with more than 3/4 of the diseased 
area are called severe oleifera leaves. The processing pro-
cess of the experimental samples: picking, washing (using 
deionized water), sorting, drying (60 °C for 6 h), grinding, 
sieving (200 mesh sieve), tableting (10Mpa pressure for 
1 min), bagging, labeling, use LIBS and THz instruments 
to detect samples.

Processing method
Collection of LIBS spectra
In this experiment, the nutrient elements in the leaves 
of Camellia oleifera are detected using the LIBS instru-
ment of Ocean Optics Company’s model MX2500 + . The 
solid-state laser—Nd: YAG laser (Quantel, Big Sky Laser 
Ultra50) is used to generate 1060  nm light excitation. 
The instrument contains 5 Channels. The intensity of the 
LIBS spectrum is affected by the distance between the 
focusing lens and the sample and the delay time. There-
fore, the LIBS equipment parameters are set and opti-
mized accordingly. Through the comparison and analysis 
of LIBS spectral signals, the optimal parameter settings of 
the LIBS equipment are: single laser trigger, laser energy 
set to 50 mJ, and the wavelength range of the spectrom-
eter is 198.71  nm ~ 727.69  nm, the optical resolution is 
0.1 nm, the integration time is 1 μs; the distance between 
the focusing lens and the sample surface is set to 4.1 cm, 
and the delay time is set to 2.5 μs. Each sample collects 8 
LIBS spectral data values dispersedly; the purpose is to 
reduce the error and reduce the influence of the uneven 
distribution of elements in the leaves of Camellia oleifera.

The spectral line data obtained from the experiment 
correspond to the National Institute of Standards and 
Technology (NIST) database, and the elements are cali-
brated within the error range. The elements detected 
by the LIBS instrument in this experiment are shown 
in Fig.  1. Figure  1a is the elements detected by LIBS 
within 257 ~ 262  nm, which are Al257.49, FeII259.94, 
MnII260.568; and Fig.  1b is the element information 
detected in the 279 ~ 281 nm spectral band, Mn279.482, 
and Mn280.108; Fig.  1c is the element information 
detected in the 393 ~ 398 nm spectral band, CaII393.41, 
and CaII396.91; Fig.  1d are elements detected in the 
422 ~ 446  nm spectral range, including four character-
istic spectral lines: Ca422.70, Fe438.41, Ca443.56, and 
Ca445.63. It can be seen from Fig. 1 that the character-
istics peak intensity of healthy oil-tea Camellia leaves is 

higher than that of diseased oil-tea Camellia leaves, and 
the four characteristic spectral lines of diseased oil-tea 
Camellia leaves gradually decrease with the increase of 
the disease level. The main reason is that these elements 
are all necessary elements for the growth of Camellia 
oleifera. As the degree of anthracnose on the leaves of 
Camellia oleifera increases, the content of these types of 
elements gradually decreases.

THz spectrum collection
The Terahertz Time-Domain Spectroscopy (THz-TDS) 
system used in this experiment is a terahertz system 
developed by Advantest, Japan. The model is TAS7400. 
The spectrum measurement is carried out in the time-
domain transmission mode. The spectrum collec-
tion range of the system is 0.5–7 THz, the resolution is 
7.6 GHz, the laser center wavelength is 1560 nm, and the 
laser power is 400  μW. Because moisture significantly 
influences the terahertz spectrum, the spectrum collec-
tion process is carried out in a closed box, and dry air 
is continuously pumped to make the air humidity of the 
measurement environment below 10%. The temperature 
is controlled at about 25 °C. In order to reduce the error, 
each sample is measured at three points, and each point 
is measured twice.

Due to the THz absorption coefficient spectrum, the 
spectrum higher than 1.8THz has obvious noise. This 
may be due to the low signal-to-noise ratio in the high-
frequency area due to the scattering effect. The part of 
the spectrum below 0.6THz that is less than 0 and the 
noise part should also be intercepted. Therefore, the 
absorption coefficient spectrum of 0.6 ~ 1.8THz is taken 
for analysis. Figure  2 shows the THz absorption coef-
ficient spectra of five samples after an interception. As 
the frequency increases, the absorption coefficient of the 
sample also increases. Due to the fingerprint spectrum 
characteristics of the terahertz spectrum, it can be seen 
from the figure that the absorption spectra of healthy 
leaves are significantly different from those of diseased 
leaves, and the absorption intensity gradually decreases 
as the diseased grade of Camellia oleifera increases.

Data processing and analysis
Principal component analysis
Principal component analysis (PCA) is a multivariate sta-
tistical method [16]. While preserving the original vari-
able information as much as possible, the basic idea is 
to transform the original high-dimensional data into a 
low-dimensional feature variable of linearly independent 
through an orthogonal transformation. The transformed 
variables are called principal components (PCs). PCA is a 
linear algorithm and cannot explain the complex polyno-
mial relationships between features [17, 18]. Under normal 
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circumstances, when the cumulative variance contribution 
rate of the current n PCs is large enough (generally 85%), 
the original data can be replaced with the first n PCs. The 
principal component analysis process is as follows [19]:

1) Standardize the original spectral data Xi , and then 
calculate the covariance matrix S.

(1)X∗

i =

Xi −mean(Xi)

std(Xi)
(i = 1, 2, 3, . . . , n)

(2)S =

X∗TX∗

n− 1

 where i is the i-th sample and n is the number of 
samples.

2) Calculate the eigenvalues and correlation coefficient 
matrix R of the slope variance matrix S.

 Among them: rii = 1,rij = rji,rij is the correla-
tion coefficient between the sample i and the vari-
able j , m is the number of eigenvalues, and k is the 
k-th standardized spectral data. Then calculate the 

(3)R = (rij)m×m

(4)
rij =

n
∑

k=1

X∗

kiX
∗

kj

n− 1
, (i, j = 1, 2, 3,m)

Table 1 Grid search determines parameters

Accuracy% c 0.01 0.1 1 10 100

Gamma 1 2 3 4 5

0.01 1 99.1 99.1 98.3 99.1 99.1

0.1 2 98.6 98.6 99.1 98.1 99.1

1 3 99.3 99.1 99.1 99.3 98.3

10 4 99.1 99.3 99.3 98.6 99.3

100 5 98.6 98.3 99.3 99.3 99.1

Start End Levels SVs

Log10(Gamma) − 2 2 5 Validation Accuracy 99.3%

Log10(c)/Nu − 2 2 5 Training Accuracy 100%

C 0.01

Gamma Value 1

Table 2 Extract feature variables

Spectrum

Variable LIBS THz THz-LIBS-CARS THz-LIBS-UVE THz(CARS)-
LIBS(CARS)

THz(UVE)-LIBS(UVE)

CARS 460 4 708 – 4 + 460 –

UVE 195 52 – 378 – 52 + 195

Table 3 K‑S classification results of THz and LIBS detection

Grade of anthracnose THZ detection LIBS detection

Modeling set/
piece

Prediction set/
piece

Total/piece Modeling set/
piece

Prediction set/
piece

Total/piece

Mild 50 17 67 83 27 110

Mild to moderate 45 14 59 75 25 100

Moderate 50 16 66 83 27 110

Severe 51 17 68 66 44 110

Healthy 99 33 132 102 68 170
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eigenvalues and sort them in descending order, 
λ1 ≥ λ2 ≥ λ3 ≥ … ≥ λm ≥ 0.

3) According to the cumulative variance contribution 
rate, the appropriate number of principal compo-
nents is selected and the model is established.

PCA‑LDA analysis
Linear discriminant analysis (LDA) is a supervised classi-
fication method. The basic idea of LDA classification is to 
extract the best identifiable low-dimensional features from 
high-dimensional features and then use these selected fea-
tures to classify samples. Make the samples of the same 
kind cluster together as much as possible, while the sam-
ples of the different kinds are separated as much as pos-
sible; that is, the between-class variance is the largest, and 
the intra-class variance is the smallest [20, 21] since LDA 
uses the Fisher criterion function, LDA is also called Fisher 
linear Discriminant Analysis (FDA) [22]. The Fisher crite-
rion function is

W  is the projection direction, Sb is the inter-class 
dispersion matrix, and Sw is the intra-class dispersion 
matrix. And are defined as formula (6) and formula (7), 
respectively.

(5)j(W ) = arg max
W

∣

∣WTSbW
∣

∣

∣

∣WTSwW
∣

∣

(6)Sb =

C
∑

i=1

Ni(µi − µ)(µi − µ)T

(7)Sw =

C
∑

i=1

∑

x
(k)
i ∈Xi

(

x
(k)
i − µi

)(

x
(k)
i − µi

)T

C is the number of sample categories, Ni(i = 1, 2, ...,C) 

is the number of class i samples, µ =
1
N

N
∑

j=1

xj is the 

mean vector of all samples, N  is the total number of 
samples, xj is the j sample vector,Xi is category i sam-
ples, x

(k)
i  is the k sample vector of class i , and 

µi =
1
Ni

∑

x
(k)
i ∈Xi

x
(k)
i  is the mean vector of class i samples.

LDA requires that the input matrix X cannot be too 
many; otherwise, it cannot be run. For example, the X 
input of the SVM is 110 × 787, and there are 787 spec-
tral variables. However, LDA cannot accommodate 
787 spectral variables, so it is usually PCA-LDA. X 
[110 × 787] is compressed into T [110 × 20] principal 
component score variables through PCA, and we select 
several score variables as input, to ensure the correct 
operation of LDA.

Support vector machine analysis
The support vector machine (SVM) algorithm is a 
supervised learning model. Its main idea is to find 
the optimal separation hyperplane and use a nonlin-
ear mapping function to map the training data set to 
the high-dimensional space to maximize the distance 
between different class samples [23]. SVM has a good 
generalization ability in the classification of different 
types of samples [17]. In the process of establishing the 
SVM model, determining the penalty factor c and the 
kernel parameter g is the key to establishing the SVM 
model [24]. The parameters in this paper are obtained 
by a grid search to get the optimal c and g, as shown 
in Table 1. In the grid, it can be seen that the optimal 
Validation accuracy is 99.3%. Choose one of 99.3% to 
get the optimal training accuracy of 100%, and the cor-
responding optimal c is 0.01 and g is 1.

Table 4 PLS‑DA modeling of single spectrum and fusion spectrum

Spectrum Modeling set Prediction set

RMSEC R2c Misjudgment rate RMSEP R2p Misjudgment rate

THz 0.861 0.684 56.12% 0.775 0.661 60.20%

LIBS 0.515 0.876 31.54% 0.331 0.947 16.23%

LIBS‑CARS 0.176 0.986 0.49% 0.130 0.992 0
LIBS‑UVE 0.249 0.971 5.38% 0.436 0.908 21.98%

THz‑LIBS 0.528 0.874 29.49% 0.436 0.914 4.12%

THZ‑LIBS‑CARS 0.103 0.995 0 0.110 0.995 1.03%
THZ‑LIBS‑UVE 0.180 0.985 1.02% 0.405 0.927 23.71%

THZ(CARS)‑LIBS(CARS) 0.188 0.985 1.02% 0.160 0.985 0
THZ(UVE)‑LIBS(UVE) 0.252 0.973 5.10% 0.382 0.918 18.37%
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Extract feature variables
The specific number of feature variables of various spec-
tra extracted by CARS,UVE is shown in Table 2.

Results
Partial least squares discriminant modeling analysis 
of LIBS, THz and LIBS-THz based on CARS and UVE
A total of 392 Camellia oleifera leaf samples are detected 
by THz, which are divided into 295 modeling samples 
according to the classification of 3:1 by K-S, including 
50, 45, 50, 51, and 99 samples of mild anthracnose, mild 
to moderate anthracnose, moderate anthracnose, severe 
anthracnose, and healthy Camellia oleifera leaf samples. 
There are 97 samples in the prediction set, including 17, 
14, 16, 17, and 33 leaves of mild, mild to moderate, mod-
erate, severe, and healthy Camellia oleifera. A total of 600 
LIBS spectral sample points are used to detect anthrac-
nose of Camellia oil leaves. K-S is divided into model set 
409 and prediction set 191 according to 3:1. Among the 
modeling sets, the leaf samples of mild anthracnose, mild 
to moderate anthracnose, moderate anthracnose, severe 
anthracnose, and healthy Camellia oleifera are 110, 100, 
110, 110 and 170, respectively. And in the prediction set, 
the number of mild anthracnose leaf samples, mild to 
moderate anthracnose leaf samples, moderate anthrac-
nose leaf samples, severe anthracnose leaf samples, and 
healthy Camellia oleifera leaf samples are 27, 25, 27, 44, 
68, respectively, as shown in Table 3.

It can be seen from Table  4 that the PLS-DA model 
established by THz spectroscopy to detect the anthrac-
nose of Camellia oleifera has a misjudgment rate of mod-
eling set and prediction set are 56.12% and 60.20%. The 
LIBS spectrum establishes a PLS-DA model to detect 
anthracnose of Camellia oleifera. Although the misjudg-
ment rate of the prediction set is 16.23%, the misjudg-
ment rate of the modeling set reached 31.54%. When the 
LIBS and THz spectra are spliced, the LIBS-THz-PLS-
DA modeling error rate is 29.49%, which is lower than 

the modeling set error rate of the THz and LIBS mod-
els established separately, so LIBS-THz is proved to be 
able to improve the accuracy of identifying the grade of 
anthracnose. Since the results of establishing the PLS-DA 
model after THz is extracted by CARS and UVE features 
are abysmal, the data is not used as a reference. After the 
CARS feature extraction, the misjudgment rate of the 
modeling set of the PLS-DA model for LIBS is 0.49%, and 
the misjudgment rate of the prediction set is 0. However, 
the misjudgment rate of the modeling set after UVE fea-
ture extraction is 5.38%, and the misjudgment rate of the 
prediction set is 21.98%, indicating that the LIBS detec-
tion of the degree anthracnose of Camellia oleifera is bet-
ter with CARS to extract feature values. Perform CARS 
and UVE feature extraction on the spectra directly spliced 
between LIBS and THz, and then perform PLS-DA mod-
eling, respectively. From Table 4, it can be seen that the 
calibration standard deviation of LIBS-THz-CARS is 
RMSEC = 0.103, and the calibration determination coef-
ficient  R2c = 0.995, modeling set misjudgment rate is 
0, the prediction standard deviation RMSEP = 0.110, 
the prediction determination coefficient  R2p = 0.995, 
the misjudgment rate of the prediction set is 1.03%; the 
LIBS-THz-UVE’s RMSEC = 0.180,  R2c = 0.985, the mod-
eling set misjudgment rate is 1.02%, RMSEP = 0.405, 
 R2p = 0.927, and the misjudgment rate of the prediction 
set is 23.71%. It once again proves that CARS feature 
extraction is effective in detecting the anthracnose grade 
of Camellia oleifera leaves. Next, the LIBS spectrum and 
the THz spectrum are extracted with CARS and UVE 
features, respectively, and then the spectrum is spliced, 
and the intermediate fusion is performed. The modeling 
effect is still better after the CARS feature extraction. The 
misjudgment rate of the modeling set is 1.02%, and the 
prediction set misjudgment rate is 0. After UVE feature 
extraction, the misjudgment rate of the modeling set is 
5.10%, and the misjudgment rate of the prediction set is 
18.37%.

Table 5 SVM modeling of single spectrum and fusion spectrum

Spectrum Modeling set MSC-modeling set Prediction set MSC-prediction set

THz 82.65% 74.49% 61.85% 53.06%

LIBS 100% 100% 94.37% 95.78%

LIBS‑CARS 100% 100% 97.36% 96.31%
LIBS‑UVE 100% 100% 94.73% 95.78%

THz‑LIBS 100% 100% 90.63% 95.83%

THz‑LIBS‑CARS 100% 100% 95.83% 100%
THz‑LIBS‑UVE 100% 100% 95.83% 96.90%

THz(CARS)‑LIBS(CARS) 100% 100% 100% 97.79%
THz(UVE)‑LIBS(UVE) 100% 99.66% 97.94% 97.94%
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The five types of samples are represented by 0, 1, 2, 3, 
4. 0–1, 1–2, 2–3, 3–4, and 4–5 respectively represent the 
classification range of the five types of samples, they are 
considered as a classified mistake if they exceed the clas-
sification range.

Support vector machine modeling of LIBS, THz 
and LIBS-THz based on CARS and UVE
In establishing the SVM model, the grid search method 
is adopted to select the optimal SVM parameters c and 
g, and the model is verified by cross-validation. Finally, 
part of the prediction set samples that do not partici-
pate in the modeling are reserved for external validation 
of the model. In order to obtain the optimal model, this 
paper imported the spectra pretreated by MSC, baseline 
correction, and normalization into the SVM algorithm 
and established the model with the two most commonly 
used kernel functions of SVM, and compared the model 

results under different pretreatments and different ker-
nel functions. Finally, it is determined that the modeling 
set and prediction set established by the Linear kernel 
preprocess by MSC have the highest accuracy. Table  5 
shows the accuracy of the modeling set and prediction 
set of SVM based on CARS and UVE for LIBS, THz, and 
LIBS-THz. It can be seen from Table 5 that the accuracy 
of the modeling set and modeling set pretreated by MSC 
is basically 100%. Combined with the accuracy of the pre-
diction set, it can be seen that the accuracy of the mod-
eling set of THz (CARS)-LIBS(CARS)-SVM is 100%, and 
the accuracy of the prediction set is 100%. After MSC 
preprocessing, the accuracy of the modeling set of THz-
LIBS-MSC-CARS-SVM is 100%, and the accuracy of the 
prediction set is 100%. That is, these two models are the 
best results of SVM modeling.

Figure  3 is a comparison diagram of the prediction 
set accuracy of LIBS-CARS, THz-LIBS-CARS, THz 
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(CARS)-LIBS(CARS) without preprocess and the SVM 
model with MSC preprocess. Figure 3a the prediction set 
without preprocessing has one sample with mild to mod-
erate anthracnose of Camellia oleifera misclassified as 

mild anthracnose of Camellia oleifera, and four samples 
with mild to moderate anthracnose of Camellia oleifera 
are wrongly classified as moderate anthracnose. A total 
of five samples are misclassified; the prediction set after 
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Fig. 4 Plane classification diagram of linear discriminant analysis model of modeling set samples, a THz‑LIBS‑CARS, b THz‑LIBS‑MSC‑CARS, c 
THz‑LIBS‑UVE, d THz‑LIBS‑MSC‑UVE

Table 6 LDA modeling of single spectrum and fusion spectrum

Spectrum Modeling set Prediction set MSC-modeling set MSC-prediction set

THz 98.30% 61.85% – –

LIBS 87.29% 83.68% 90.22% 93.15%

LIBS‑CARS 89.98% 83.68% 92.91% 96.31%

LIBS‑UVE 96.82% 81.15% 94.38% 93.19%

THz‑LIBS 91.53% 85.42% 97.63% 93.75%

THz‑LIBS‑CARS 98.64% 92.70% 98.98% 96.87%
THz‑LIBS‑UVE 98.98% 82.47% 98.98% 91.75%

THz(CARS)‑LIBS(CARS) 89.46% 87.62% 93.54% 97.94%

THz(UVE)‑LIBS(UVE) 94.22% 84.53% 95.58% 95.876%



Page 10 of 13Bin et al. Plant Methods           (2022) 18:52 

MSC pretreatment included one sample that classi-
fied the mild anthracnose of Camellia oleifera into mild 
to moderate anthracnose, and two samples of mild to 
moderate anthracnose of Camellia oleifera are misclas-
sified as mild, the three samples with mild to moderate 
anthracnose of Camellia oleifera are wrongly classified 
as moderate anthracnose of Camellia oleifera, and one 
sample with moderate anthracnose of Camellia oleifera 
is wrongly classified as mild to moderate anthracnose 
of Camellia oleifera, a total of seven misclassifications. 
Figure  3b in the prediction set without pretreatment, 
four samples of mild anthracnose of Camellia oleifera 
are misclassified into mild to moderate anthracnose of 
Camellia oleifera, and four samples are misclassified. The 
accuracy of the prediction set after MSC preprocessing is 
100%, without misclassification. Figure 3c the accuracy of 
the prediction set without pre-processing is 100%. After 
the MSC pre-processing, the prediction set is incor-
rectly classified into three types: One sample with mild 
to moderate anthracnose of Camellia oleifera is incor-
rectly classified into mild and two samples with moderate 
anthracnose of Camellia oleifera is incorrectly classified 
into mild to moderate anthracnose of Camellia oleifera. 
In summary, the modeling accuracy and prediction accu-
racy of the THz-LIBS-MSC-CARS-SVM model is 100%, 
and the modeling accuracy and prediction accuracy of 
THz (CARS) -LIBS (CARS)-SVM model is 100%, these 
two models are the best in the SVM model for detecting 
anthracnose on Camellia leaves.

LIBS, THz, LIBS-THz linear discriminant analysis modeling 
based on CARS and UVE
Enter the variables to establish the LDA model. After the 
model-based, import the reserved part of the prediction 
set samples into the established LDA classification model 
to evaluate the model. As shown in Fig. 4, the plane clas-
sification diagram is drawn by the first two discriminant 
functions of the modeling set samples.  In the two spec-
tra selected from the nine spectra and the LDA model 

preprocessed by MSC, the distribution of samples of 
different types of modeling sets has obvious classifica-
tion boundaries. Because the LDA classification diagram 
mainly represents the degree of aggregation of samples 
of the same type, the distribution of samples of different 
types does not affect the classification accuracy of the 
model.

From Fig. 4a and b, it can be seen that the accuracy of 
the THz-LIBS-CARS modeling set is increased by 0.34% 
after MSC preprocessing, the classification boundary 
(b) is more precise than (a), the classification clustering 
degree (b) is higher than (a), combined with Table 6, the 
accuracy of the prediction set is increased by 4.17%; from 
(c) and (d), it can be seen that although the accuracy of 
the modeling set of THz-LIBS-UVE has not changed 
after MSC preprocessing, it can be seen from the figure. 
The classification boundary (d) is more precise than (c), 
and the classification clustering degree (d) is higher than 
(c). Combined with Table 6, the prediction set accuracy 
of THz-LIBS-UVE is improved by 9.28% after the MSC 
preprocessing, which is of great significance to improving 
classification accuracy.

It can be seen from Table  6 that the accuracy of the 
THz modeling set is 98.3%, but the accuracy of the pre-
diction set is 61.85%, which is prone to under-fitting. 
The accuracy of the modeling set from LIBS-LDA to 
LIBS-MSC-LDA increased from 87.29 to 90.22%, and 
the accuracy of the prediction set rose from 83.68 to 
93.15%. The accuracy of the modeling set in LIBS-UVE-
LDA is 96.82%, but the accuracy of the prediction set 
is only 81.15%, the model is not very stable, but after 
MSC preprocessing, the accuracy of the modeling set 
is 94.38%, and the prediction set accuracy is 93.19%, 
which is relatively close, and the model is relatively 
stable.

Table 7 compares the results of the optimal models in 
PLS-DA, SVM, and LDA. It can be seen that the best 
models are THz (CARS)-LIBS(CARS)-SVM and THz-
LIBS-MSC-CARS-SVM, the accuracy of the modeling 
set of the two models is 100%, and the accuracy of the 

Table 7 Comparison of PLS‑DA, SVM, LDA model results

Spectrum Modeling set Prediction set

Classification accuracy Misjudgment rate Classification accuracy Misjudgment 
rate

THz‑LIBS‑CARS‑PLS‑DA 100% 0 98.97% 1.03%

THz(CARS)‑LIBA(CARS)‑SVM 100% 0 100% 0

THz‑LIBS‑MSC‑CARS‑SVM 100% 0 100% 0

THz‑LIBS‑MSC‑CARS‑LDA 98.98% 1.02% 96.87% 3.13%
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prediction set is also 100%. It is the model with the best 
stability and highest accuracy among all models.

Discussion
From Fig. 5a, b, it can be seen that the misjudgment rate 
of LIBS-THz-PLS-DA is relatively high, with 87 misjudg-
ments in the modeling set and 22 misjudgments in the 
prediction set; after CARS feature extraction, Fig.  5c, d 
the false-positive rate of LIBS-THz-CARS-PLS-DA is 
significantly reduced, the modeling set hasn’t misjudg-
ments, and the prediction set has one misjudgment. Fig-
ure 5e, f the misjudgment rate was lower than that of the 
LIBS single spectrum after CARS feature extraction, two 
misjudgments in the modeling set and don’t have a mis-
judgment in the prediction set. Mainly because Competi-
tive Adaptive Reweighted Sampling (CARS) is a feature 
variable selection method that combines Monte Carlo 
sampling and PLS model regression coefficients, imitat-
ing the principle of "survival of the fittest" in Darwin’s 
theory. It is utilized to filter the variables in the spectrum 
that contribute more to the spectrum. According to the 
comparison of misjudgment rates in Fig. 5a–f, it is nec-
essary to combine LIBS and THz to detect the low-level 
fusion of anthrax of Camellia oleifera for feature extrac-
tion. After feature extraction of LIBS and THz, respec-
tively, and then spectral splicing (Fig. 5e, f ), although the 
results are worse than those of low-level fusion LIBS-
THz-CARS-PLS-DA, they are much better than those 
of direct spectral splicing LIBS-THz-PLS-DA, proving 
that intermediate fusion is meaningful. Although the 
result of intermediate fusion in this paper is worse than 
that of low-level fusion, there may still be some other fea-
ture extraction and model building methods to make the 
result of intermediate fusion better than that of low-level 
fusion, which is still worth trying in the future research. 
To sum up, the best result obtained in the establishment 
of the PLS-DA model is LIBS-THz-CARS-PLS-DA; that 
is, the PLS-DA model is established after the splicing of 
LIBS and THz spectra through the extraction of CARS 
features.

From Table 5, a separate comparison of the prediction 
set without preprocessing and the prediction set with 
MSC preprocessing shows that except for LIBS-CARS, 
the results of other models are preferable to the original 
model after MSC preprocessing. Therefore, MSC pre-
processing is necessary to establish a SVM model for 
detecting the degree of anthrax of Camellia oleifera. 
Since multivariate scatter correction is used to correct 
the offset effect in the spectral data, the particle size of 
the sample is not uniform during the sample preparation 
process, and the scattering benefit is prone to occur dur-
ing the spectral acquisition process, which can be elimi-
nated by MSC. It can be seen from Table  6, from LIBS 

to LIBS-CARS to LIBS-MSC-CARS; the accuracy of 
the modeling set and prediction set has been improved, 
indicating that MSC preprocessing and CARS feature 
extraction is necessary for the LDA model of anthrac-
nose detection of Camellia oleifera leaves. Uninformative 
variable elimination (UVE) is a feature extraction method 
based on PLS model regression coefficient stability anal-
ysis, which  is mainly developed to eliminate variables 
that have no valid information in the original spectral 
data. From Table  6, although the model after UVE fea-
ture extraction has higher modeling set accuracy, the 
prediction set accuracy is not high, and the model stabil-
ity is poor. In the LDA model for detecting anthrax on 
Camellia oleifera leaves, the variables extracted from the 
CARS feature are more suitable for this model than those 
extracted from UVE feature. Comprehensive classifica-
tion accuracy and modeling accuracy show that the accu-
racy is the highest, and the model with the best stability 
is THz-LIBS-MSC-CARS.

Conclusions
In this paper, the combined THz and LIBS with chemo-
metric methods are used to detect the degree of anthrac-
nose of Camellia oleifera. The non-destructive and 
accurate determination of the degree of anthracnose of 
Camellia oleifera is achieved. Firstly, the models of PLS-
DA are established, according to the model’s results, the 
THz-LIBS-CARS-PLS-DA is the best result in all PLS-
DA models, it’s RMSEC and  R2c are 0.103 and 0.995, 
respectively, and the misjudgment rate is 0; The RMSEP 
and  R2p of it are 0.110 and 0.995, respectively, and the 
misjudgment rate is 1.03%. Then, the models of SVM 
are established, the THz (CARS)-LIBS(CARS)-SVM and 
THz-LIBS-MSC-CARS-SVM are the best, the accuracy 
of modeling set of them are 100%, and the accuracy of 
prediction set of them are 100%. Finally, the models of 
LDA are established, the THz-LIBS-MSC-CARS-LDA 
is the best model, the accuracy of the modeling set is 
98.98%, and the accuracy of the prediction set is 96.87%. 
The research results show the SVM has the highest accu-
racy, prediction accuracy, and best stability. Therefore, 
combined THz and LIBS with the SVM model can real-
ize non-destructive, fast, and high-precision detection on 
the degree of anthracnose of Camellia oleifera. This study 
provides an experimental reference for the detection of 
anthracnose of Camellia oleifera.
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