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METHODOLOGY

Wheat physiology predictor: predicting 
physiological traits in wheat from hyperspectral 
reflectance measurements using deep learning
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Abstract 

Background The need for rapid in‑field measurement of key traits contributing to yield over many thousands of gen‑
otypes is a major roadblock in crop breeding. Recently, leaf hyperspectral reflectance data has been used to train 
machine learning models using partial least squares regression (PLSR) to rapidly predict genetic variation in photo‑
synthetic and leaf traits across wheat populations, among other species. However, the application of published PLSR 
spectral models is limited by a fixed spectral wavelength range as input and the requirement of separate custom‑built 
models for each trait and wavelength range. In addition, the use of reflectance spectra from the short‑wave infrared 
region requires expensive multiple detector spectrometers. The ability to train a model that can accommodate input 
from different spectral ranges would potentially make such models extensible to more affordable sensors. Here we 
compare the accuracy of prediction of PLSR with various deep learning approaches and an ensemble model, each 
trained and tested using previously published data sets.

Results We demonstrate that the accuracy of PLSR to predict photosynthetic and related leaf traits in wheat can be 
improved with deep learning‑based and ensemble models without overfitting. Additionally, these models can be 
flexibly applied across spectral ranges without significantly compromising accuracy.

Conclusion The method reported provides an improved prediction of wheat leaf and photosynthetic traits from leaf 
hyperspectral reflectance and do not require a full range, high cost leaf spectrometer. We provide a web service 
for deploying these algorithms to predict physiological traits in wheat from a variety of spectral data sets, with impor‑
tant implications for wheat yield prediction and crop breeding.
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Introduction
The global population is estimated to reach 9.7 billion 
by 2050 [1]. As a result, the projected demand for cereal 
grain exceeds the agricultural forecast output [2]. World-
wide crop production must double to satisfy projected 
global food demand [3]. Wheat is the second most impor-
tant source of calories consumed globally after rice [4, 5]. 
The improvement of wheat yields in the face of reduc-
tions in arable land area and deleterious effects of climate 
change is paramount. Increasing biomass production 
and yield potential through increases in photosynthetic 
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performance has become a major recent target for cere-
als breeding [6, 7]. However, physiological breeding for 
photosynthesis and related traits is hampered by the lack 
of high throughput screening tools to enable either selec-
tion of superior germplasm or genetic mapping of these 
traits in large populations [6–9].

Recently we developed a machine learning frame-
work based on Partial Least Squares Regression (PLSR) 
and hyperspectral reflectance, which enables prediction 
of several physiological traits related to photosynthetic 
performance in wheat leaves with high accuracy and 
speed (30  s to 1  min per leaf; [4, 10]). Measuring pho-
tosynthesis-related traits, such as nitrogen per unit leaf 
area  (Narea) and leaf dry mass per area (LMA), require 
laborious, destructive, and expensive laboratory-based 
methods which may take several days. Similarly, the 
estimation of physiological traits underpinning photo-
synthetic capacity, such as maximum Rubisco activity 
normalised to 25 °C (Vcmax25) and electron transport rate 
(J), require time-consuming gas exchange measurements 
(up to 20 min per derived value; see [11, 12]) and specific 
expertise.

Most prior work [6, 8, 10, 11, 13–21] on mapping 
hyperspectral reflectance based measurements of various 
plants to physiological traits and leaf biochemistry uses 
PLSR to develop predictive algorithms. PLSR has been 
used for studying diverse traits such as sucrose, reducing 
sugar and total sugar dynamics [18], leaf water status [17, 
19], salinity stress [20] and leaf nutrient contents [21]. 
Diverse species studied include tobacco [6, 8], tree spe-
cies [10, 13], soybean [11], maize [14], wheat [15], rice 
[20], okra [16] and mango [21]. Data sets used are usu-
ally small (i.e., just a few hundred samples) in most stud-
ies, hence resulting in overfitting to the training data in 
the model, which results in prediction within the training 
data but not in unseen samples, is a major problem that 
needs to be avoided. PLSR has been a popular method for 
spectral modelling because it is computationally simple 
and therefore effective at avoiding overfitting.

This paper explores various deep learning approaches 
for predicting leaf physiological traits in wheat and 
compares the results to the PLSR method. While deep 
learning has commonly been used for machine vision 
applications such as feature extraction and plant clas-
sification [16, 22, 23], it does not seem to have been 
exploited to explore natural variation in predicted leaf 
and physiological traits. However, photosynthetic traits 
have been extracted using artificial neural networks from 
data collected from transgenic tobacco canopies pre-
senting a range of photosynthetic capacity generated by 
genetic engineering [8].

There are several advantages to using deep learning 
approaches for predicting leaf traits from leaf reflectance. 

First, existing PLSR-based methods require a fixed length 
hyperspectral reflectance spectral wavelength range as 
input, necessitating a separate model built for each trait 
and wavelength range. Second, published PLSR models 
for photosynthetic traits use reflectance spectra from the 
short-wave infrared range, requiring expensive multiple 
detector spectrometers [24]. Thus, the ability to train a 
model that can accommodate input from multiple spec-
troradiometers of different wavelength ranges would 
make such models extendable to a range of affordable 
sensors, including Vis–NIR imaging sensors. Third, it is 
possible that deep learning or an ensemble model could 
improve prediction accuracy over a PLSR modelling 
approach at the leaf level (as observed in [8]).

Here, we compare different machine deep learning 
algorithms to improve the prediction of physiological 
traits using wheat leaf reflectance spectral data published 
in Silva-Perez et  al. [4, 12]. We conducted a thorough 
architecture search for the best deep learning algorithm 
comparing multi-layered perceptron (MLP), recurrent 
neural networks and 1D convolutional neural networks 
(CNN) and an ensemble model. Our multi-task deep 
learning approach predicts multiple traits using a single 
model. The model exploits correlations between traits to 
improve prediction accuracy.

To make our models more accessible to researchers and 
potentially wheat breeders, we have created a website 
(Wheat  Physi ology  Predi ctor (shiny apps. io)) that hosts 
our pre-trained models. Users can upload their wheat 
hyperspectral reflectance measurements and our web 
server will return all physiological traits predicted by a 
selected model.

Materials and methods
Dataset description
We used the large multi-site, multi-environment wheat 
data set including two treatment regimes, collected by 
Silva-Perez et al. [4, 12] for the construction of the mod-
els. This dataset consisted of the entire hyperspectral 
reflectance spectra (400–2400  nm) from wheat leaves 
and the corresponding physiological traits concur-
rently measured on the same leaf section. Hyperspec-
tral reflectance along with physiological, biochemical 
and morphological leaf traits were measured at various 
developmental stages in 67 wheat genotypes and nine 
triticale genotypes grown in the field in both Aus-
tralia (35°16′18.8′′S 149°06′50.3′′E) and Mexico 
(27°22′15.0′′N 109°55′49.3′′W) and in the glasshouse 
in Australia under two nitrogen treatments. Experiments 
used in the current work are Aus1, Aus2, Aus3, and Mex1 
described in Silva-Perez et al. [12].

This extensive data set included both measured data 
and parameters derived from biochemical modelling for 

https://wheatpredictor.appf.org.au/
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the spectral models described here. Single point traits 
included  CO2 assimilation rate (A, µmol  CO2  m−2   s−1) 
and stomatal conductance  (gs, mol  H2O  m−2   s−1) 
obtained from leaf gas-exchange measurements with a 
LI-COR (LI-6400XT) under an irradiance of 1800 mmol 
quanta  m−2   s−1. Modelled traits included maximum 
velocity of Rubisco carboxylation (Vcmax, µmol  CO2 
 m−2   s−1), maximum velocity of carboxylation at 25  °C 
(Vcmax25, µmol  CO2  m−2   s−1), electron transport rate (J, 
µmol  e−  m−2   s−1), Vcmax25/  Narea (µmol  CO2  s−1(g  N−1)) 
derived from modeling of  CO2 response curves of A 
using the  C3 biochemical model of photosynthesis [25]. 
Vcmax was the trait most sensitive to temperature and 
we have addressed this issue by normalisation to 25  °C 
[26]. Leaf structural traits included leaf dry mass per 
area (LMA, g  m−2), leaf nitrogen concentration  (Nmass, 
mg N  g−1), leaf nitrogen per unit area  (Narea, g N  m−2) 
and SPAD as a surrogate for chlorophyll content. Com-
plete measurement protocols can be found in Silva-Perez 
et  al. [12]. The relationships between these traits, their 
heritability and genetic component of their variation is 
described elsewhere [12].

Hyperspectral reflectance was measured with the Ana-
lytical Spectral Devices FieldSpec3 using a modified leaf 
clip containing an integrated light source described in 
Silva-Perez et  al. [4]. Best practice for leaf spectral data 
collection and spectral modelling is described in [27] 
and lack of significant effects of measurement condi-
tions inside the leaf clip-on data models is reported in 
[28]. In Aus1, Aus2, and Aus3 experiments, the reflec-
tance was corrected with ‘jump correction’ at 1000  nm 
and 1800 nm, and in Mex1, reflectance was corrected at 
1000 nm and 1830 nm using the software Spectral Analy-
sis and Management System  (SAMS© The Regents of the 
University of California; https:// github. com/ carue da/ 

sams). Reflectance values from all experiments were fil-
tered from 400 to 2400 nm, and spectra with reflectance 
values at 800  nm lower than 0.35 and higher than 0.6 
were deleted and treated as outliers (Fig.  1). The result-
ing data shows distinct regions of the spectrum with 
high reflectance. Our deep learning models were built to 
capture this distribution and map any systematic devia-
tions from this distribution to corresponding physiologi-
cal trait values. As in Silva-Perez et al. [4], we restricted 
the spectral range of the inputs to 400–2400 nm because 
the signal to noise ratio of the values outside this range 
was poor, possibly due to technical limitations of the 
radiometer.

Table  1 shows the statistical distribution for the total 
dataset of measured trait values used for model construc-
tion. The number of samples for each trait was different, 
between 488 and 1013, due to variable field conditions, 
which caused some measurements to be unusable. 
Details of these data are described in [4]. We randomly 
split the data for each trait into groups, with 70% for 

Fig. 1 The mean, standard deviation, min and max reflectance measurements for the entire dataset used to build models graphically represented

Table 1 Summary of the statistical distribution of physiological 
traits used for model building

Trait Samples No. Mean Median STD

LMA 525 59.32 60.24 12.54

Narea 1013 2.59 2.7 0.77

SPAD 614 48.5 49.75 8.27

Nmass 615 42.89 43.84 8.6

Vcmax 488 170.36 159.16 65.78

Vcmax25 488 148.02 151.02 40.1

J 488 218.17 222.8 56.2

A 488 24.99 26.58 6.4

gs 488 0.48 0.45 0.21

Vcmax25/Narea 488 59.95 59.68 14.04

https://github.com/carueda/sams
https://github.com/carueda/sams
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training, 10% for validation and 20% for testing. Samples 
were randomly assigned to these groups irrespective of 
experiment location or genotype. As this is a relatively 
small sample size for training deep learning algorithms, 
we used a number of strategies to overcome overfitting 
problems (see below).

Model building
The main challenge in mapping the hyperspectral reflec-
tance data to physiological trait values is the long input 
sequence of 2000 individual wavelengths reflectance val-
ues. We considered the following three neural network 
architectures for modelling the input sequence: multi-
layer perceptron (MLP) [29]; recurrent neural networks 
in the form of long short term memory (LSTM) [30]; and 
1D convolutional neural networks (CNNs) [31].

Each layer of an MLP essentially performs a linear 
transformation of the input to the output with a non-
linear activation function applied after each layer. MLP’s 
contain at least three layers (input, hidden and output 
layers). There can be any number of hidden layers. This 
approach provides flexibility when mapping the input to 
the output; however, it cannot naturally find local spa-
tial patterns that occur in multiple places in the input 
information.

Recurrent neural networks such as the LSTM are com-
monly used for modelling input text sequences for vari-
ous natural language processing tasks. LSTMs can find 
temporal patterns in the input sequence. However, it is 
well known that LSTMs suffer from the “vanishing gradi-
ent problem”, which means they do not generally perform 
well for long input sequences [32]. Specifically, we trained 
a two-layered bi-directional LSTM model with 100 
dimensional hidden units, which was then fed into a fully 
connected layer with 200-dimensional output and then 
finally into another fully connected layer that outputs the 
predicted trait value. We used a rectified linear activation 
function (ReLU) between the two fully connected layers 
[33]. Before feeding data into the LSTM model, we first 
perform global average pooling on every 10 input wave-
lengths, reducing the granularity of the data set.

A deep 1D convolutional neural network (1D CNN) 
can find a hierarchy of increasingly longer-range spa-
tial patterns. At each layer, the 1D CNN slides a filter of 
learnt weights across the entire input length. This strat-
egy of sliding the filter allows patterns found in one part 
of the sequence to detect patterns in other parts of it. The 
equation below shows the mathematical operation used 
to compute the 1D convolution for input X.

X (l)
co

= f
(∑

ci
W (l),ci

co
∗ X (l−1),ci + Bl

co

)
.

where l denotes the lth layer of the CNN, co denotes the 
co th output channel, ci represents the channel number of 
the input X(l−1), Wco

(l),ci is the convolutional kernel cor-
responding to the ci th input channel and co th output 
channel, and Bl

co is the learnable bias corresponding to 
the kernel of the coth output channel, f() is the activation 
function (in our case ReLU was used) and * is element 
wise multiplication.

We used dilated 1D CNN layers to increase the receptive 
field size of the model. This allows each convolutional layer 
to see more of the input sequence, giving it a greater con-
text to build its internal representation.

A diagram illustrating the receptive field (green circles) 
of one output neuron (red circle) of a 2-layer 1D dilated 
CNN, which has a filter size of 5 and dilation factor of 1 
for the first layer and dilation factor of 2 for the second 
layer is shown in Fig. 2. Figure 3 shows a higher level dia-
gram of the neural network model architecture we have 
proposed for solving the problem of mapping hyperspec-
tral reflectance to a physiological trait. First, average pool-
ing is applied to the reflectance spectrum input to smooth 
the input signal since the detector can produce random 
fluctuations. Next, the dilated 1D CNN layers are used to 
extract the spatial patterns in the data. Between the 1D 
CNN layers we use batch normalisation and ReLU activa-
tions. Finally, an MLP consisting of fully connected layers 
are used to make the final prediction.

Table  2 shows the precise default model specifications 
used for the experiments.

The loss function used for model optimisation was mean 
squared error (MSE), given by the following equation:

MSE
(
y, ŷ

)
=

1

n

∑n

i

(
yi − ŷi

)2
,

Fig. 2 The dilated 1D CNN model parameters used here, namely 
a filter size of 5 and dilation factor of 1 for the first layer and dilation 
factor of 2 for the second layer. The figure illustrates the expanded 
receptive field (all green circles) of a single output neuron (red 
circle). So, each output neuron in this example depends on 13 input 
elements
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where y is the set of ground truth trait values and ŷ is the 
set of corresponding predicted values.

Overfitting
Due to the relatively small data set size (around 350 train-
ing samples) per trait to be predicted, a major problem 
is overfitting to the training data and therefore produc-
ing a model that generalises very poorly to the test set or 
previously unseen data. We adopted three techniques to 

minimise this issue: early stopping, data augmentation 
and dropout [34].

Early stopping seeks to avoid overfitting to the train-
ing data set by stopping model training early in the train-
ing cycle. This method often reduces overfitting since 
the longer a model is trained, the more opportunity the 
model has to include noise in the input data to map to 
the output. Stopping early will usually result in the model 
preferentially mapping the relatively higher level charac-
teristics of the input data to the output, which is likely 
to generalise better to the test data set [35]. In our case, 
we train a model for 1000 epochs, evaluating the valida-
tion data set every 10 epochs. The model with the highest 
validation score is retained throughout training; typically, 
this model is encountered much earlier than the end of 
training. The model that performs best on the validation 
set is most likely to be the best for generalising to the test 
set.

One way to artificially increase the size of the training 
data is to perform data augmentation. Training on addi-
tional augmented data can help a model better generalise 
the test data set by simulating random variations of the 
data. In particular, we perform random horizontal shifts 
(between −  5 and 5) on the hyperspectral reflectance 
data to boost the size of the data set by 50% from 772 to 
1158 samples. A model trained on the augmented data 
set should generalise better to the test set because the 
data augmentation increases the variance in the training 
dataset and minimises the model’s potential to overfit the 
training data.

We also used dropout before the final linear layer to 
help the model avoid overfitting the training data. Drop-
out randomly turns off a percentage of the neurons dur-
ing training to prevent the neurons from co-adapting 
with each other from complex functions from the input 

Fig. 3 High level diagram of our neural network model architecture. 
Hyperspectral reflectance values are fed through sequential neural 
network layers, producing a scalar value for each predicted trait

Table 2 Architecture of the multi‑task; single task models differ only in output size of the final fully connected layer (1 output unit 
instead of 10)

Type Filter size # Filters Dilation Batchnorm Activation

1D average pool 10 – – –

1D CNN 5 75 2 1D ReLU

1D CNN 5 150 2 1D ReLU

1D CNN 5 225 2 1D ReLU

1D CNN 5 300 2 1D ReLU

Flatten – – –

Fully connected – 800 – – ReLU

Dropout (0.2 probability) – – – – –

Fully connected – 200 – – ReLU

Dropout (0.2 probability) – – – – –

Fully connected – 10 (multi‑tasking)
1 (single tasking)

– – –
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to the output [34]. It, therefore, encourages the neurons 
to work more independently relative to each other and 
thus result in a simpler mapping from the input to the 
output.

Multi‑task learning
A single neural network can be trained to predict all the 
traits in one training run. This approach is called multi-
tasking. The main benefit of this approach is that layers 
of the neural network can be trained, which are shared 
for predicting different traits. This effectively allows the 
model to exploit certain correlations between traits to 
refine the shared weights. Multi-tasking allows for model 
weights to be adjusted using multiple error signals from 
multiple loss values for a single training example. This is 
particularly useful given the small training data set since 
the combined losses from the different traits can help to 
avoid the model overfitting to noise in the values for any 
particular trait for a given example [36].

Variable spectral ranges
Hyperspectral reflectance measurement devices support 
a variety of spectral ranges, thus to maximise the useful-
ness of our trait prediction tool we sought to make mod-
els which support variable spectral ranges. Our primary 
training data consists of full-range spectroradiometer 
measurements [350 nm, 2500 nm], which we trim during 
pre-processing to 400–2400 nm to reduce noise compo-
nents at the limits of detector range. As our CNN models 
require fixed-length input due to the linear layers at the 
output, we emulate variable spectral range inputs by way 
of data augmentation. We adopt a novel augmentation 
strategy dubbed “spectral trimming”, which trims both 
ends of the input spectrum randomly during training. 

Our strategy involves zeroing-out values at either end 
rather than trimming the input array to keep the inputs 
at a fixed length. More precisely, a pair of low/high wave-
length values are randomly sampled for each training 
example, and reflectance values on the outside of this 
range are replaced with zeros. Both low and high values 
are sampled from separate truncated normal distribu-
tions with means of 400 nm and 2400 nm and standard-
deviations of 100 nm and 500 nm, and are truncated such 
that their values are in [400 nm, 700 nm] and [1000 nm, 
2400 nm], respectively (see Fig. 4). A further constraint is 
added to ensure that input examples retain a minimum 
range of 350 nm of valid (non-zero) values.

As this online augmentation technique is inappropriate 
for PLSR, we provide a further three PLSR models, each 
trained on a distinct spectral range dataset. The regular 
PLSR model is trained on the full [400  nm, 2400  nm] 
dataset, whereas the additional models are trained on 
the ranges [400  nm, 900  nm], [400  nm, 1000  nm], and 
[400 nm, 1700 nm] to align with spectral ranges of com-
monly available spectroradiometers. If reflectance data is 
uploaded that lies outside of these predetermined ranges, 
the input data is trimmed to match the nearest PLSR 
model.

Model training details
Deep learning models were implemented using Pytorch 
and trained for 1000 epochs on a GTX 1080 TI graph-
ics card. The specific variant of early stopping we used 
works as follows: the validation set is evaluated every 10 
epochs, and the best performing model is retained. We 
used the Adam optimiser with an initial learning rate of 
0.0001. The XGBoost and PLSR implementations used 
were from the XGBoost and SKLearn Python libraries, 

Fig. 4 Probability density function (PDF) of the spectral trimming wavelength distributions
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respectively. Both PLSR and XGBoost used fixed wave-
lenth ranges. The PLSR hyperparameters (number of 
components kept) was chosen by performing a search in 
the range of (1, 30) and choosing the value with the low-
est mean validation R2 value. The XGBoost hyperparam-
eters (learning rate, max depth, colsample_bytree) are 
chosen by performing a grid search over the values (0.01, 
0.02, 0.05, 0.06, 0.08, 0.1), (3, 5, 7, 9, 11), (0.3, 0.5, 0.8, 1), 
respectively. These parameters were again chosen using 
the lowest mean validation  R2. The full code of these 
models is located at https:// github. com/ ashwh all/ hyper 
spec- trait- predi ction.

Wheat physiology predictor web server
As part of this work we have provided a publicly acces-
sible web application (Wheat  Physi ology  Predi ctor (shiny 
apps. io)) where users can upload wheat hyperspectral 
reflectance measurements in order to receive predicted 
physiological traits.

Figure 5 shows the home page of the website. The web 
server is written using the R Shiny R package that facili-
tates the building of interactive websites. The R Shiny 
server handles all data visualisation and user interac-
tion. Behind the R Shiny web server is a Python server 
that implements the following models: Single task CNN, 
Multi-task CNN, PLS, and Ensemble. The single task 
CNN consists of 10 models each individually trained to 
predict a different trait. The multi-task CNN uses a sin-
gle model to predict all trait values simultaneously. If PLS 
model is chosen, the input reflectance data is trimmed to 
the best-fitting range among the following options: [400, 
900], [400, 1000], [400, 1700], [400, 2400], and the PLS 

model trained on the chosen range is used to predict the 
trait values. If the ensemble option is selected then the 
mean of all model predictions is returned.

The web site allows users to upload hyperspectral 
reflectance data for arbitrary wavelength ranges as input 
to the model, potentially accommodating a large range of 
spectroradiometers of different spectral ranges. To rem-
edy the discontinuous jumps at the detector boundaries 
of multiple detector spectrometers, the website allows 
the user to specify the wavelengths at which these jumps 
occur and use ‘jump correction’ smoothing before model 
inference.

Figure 6 demonstrates an example for an input data file 
(6A) and the reflectance data is plotted at the first graph 
region (top 6B). After uploading a csv input file into the 
“Tool” tab of the R Shiny interface, it will automatically 
retrieve all the observations (columns in the csv file, 
excluding the first column which is the wavelength) and 
plot all the reflectance data for a specific observation at 
the “Jump(s) Preview” tab on the right, and the user can 
also select a specific observation from the dropdown list 
to preview the jumps occurred. The user can then draw a 
region onto the first plot and zoom-in that region at the 
second plot to accurately check the jumps at an arbitrary 
wavelength.

After checking the wavelengths at which the jumps 
occurred, the user can then input these wavelength val-
ues to the “Jump Correction” input fields on the left. 
This input field is constrained to numerical inputs and 
between 355 to 2495  nm. If an incorrect jump is speci-
fied, the text below will remind the user to correct it until 
it shows the correct information in Fig. 6.

Fig. 5 The home page of the Wheat Physiology Predictor

https://github.com/ashwhall/hyperspec-trait-prediction
https://github.com/ashwhall/hyperspec-trait-prediction
https://wheatpredictor.appf.org.au/
https://wheatpredictor.appf.org.au/
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The website allows users to upload a csv input file con-
taining the measured hyperspectral wavelength values for 
up to 100 observations. The input file is required to have 

the following schema. The first column of the file must 
contain numerical wavelengths in increments of 1  nm, 
and the first row must be the name of each observation, 

Fig. 6 The input data file (A) and its preview plot (B) for the user to check the jump(s)
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thus each column contains the reflectance data for a sin-
gle observation. Trait predictions are made for only the 
first 100 observations in the input file to maximise com-
putational resource sharing among simultaneous users. 
The user is warned that only the first 100 observations 
are processed if they provide more than 100 observa-
tions, as shown in Fig. 7.

The R Shiny server checks that the input files conform 
to the schema mentioned above. If the file conforms, 
the server forwards the input file to the Python model 
server to compute the predicted trait values. The pre-
dicted traits: LMA,  Narea, SPAD,  Nmass, Vcmax, Vcmax25, J, 
A,  gs and Vcmax25/Narea (abbreviated as described above) 
are based on Silva-Perez et al. [4]. The user can export the 
results of the model predictions (Fig. 8) into a csv file by 
clicking the “Download the Table” button.

Results
Model performance
Using the trait data and reflectance information across 
the complete 400 to 2400 nm spectrum from Silva-Perez 
et  al. [4, 12], we compared results from the multi-task 
1DCNN, single-task 1DCNN, MLP, LSTM, XGBoost, 
PLSR and an ensemble model of both 1DCNNs and 
PLSR (Table 3).

While model performance varied depending on the 
predicted trait, the ensemble model performed better 
than PLSR alone for all traits. In contrast, the next best 

performing model across all traits was the multitask 
1DCCN. As observed in Silva-Perez et  al. [4], leaf mass 
per area (LMA) and leaf nitrogen per area  (Narea) could be 
predicted with the highest accuracy of all traits, whereas 
stomatal conductance (gs) and maximal Rubisco activity 
per unit leaf nitrogen (Vcmax25/Narea) were the most chal-
lenging regardless of the model used. As expected, due 
to our input data comprising 2000 wavelengths of light, 
LSTM did notpredict wel across the majoprity of traits.

Table  4 explores bias in predictions derived from the 
models tested and Table 5 REP for these same models on 
the test set. The absolute value of the bias between the 
predicted and actual trait values is reported to ensure 
that mean value accurately portrays the magnitude of the 
bias. The multitask 1DCNN exhibits the smallest bias, 
followed by the ensemble of models.

Effects of spectral range on model performance
The effects of limiting the spectral range on prediction 
accuracy of our multi-task 1DCNN model for five pre-
dicted traits is shown in Fig.  9.  R2 values for the corre-
lation between predicted and measured values in the 
test set varied. Predictions in general were more robust 
with inclusion of data in the visible/NIR region but wave-
lengths in the SWIR also improved prediction accuracy. 
Narea appeared to be the trait least sensitive to omis-
sion of SWIR data with  R2 values ranging from approxi-
mately 0.836 to 0.931, respectively when Vis/NIR models 

Fig. 7 The output response warning on the number of observations from the server
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(400–1000 nm) are compared with models derived from 
full range spectra (400–2400 nm). Prediction accuracy for 
the other 4 traits suffered more from spectral trimming 
in the SWIR region, although acceptable correlations 

were still obtained, particularly for J, suggesting that util-
ity of these models may be extended to spectrometers 
with more limited wavelength range.

Fig. 8 The results of the trait values delivered by the model prediction. The Python model server performs all model computations using CPUs. All 
models just take at most a few seconds to compute the required results due to the relatively small size of the models

Table 3 R2 for performance of various models on the test set

The results reported are the mean of three runs with different random seeds. Those marked with an asterisk are included in the ensemble model

Model LMA Narea SPAD Nmass Vcmax Vcmax25 J A gs Vcmax25/Narea Mean

Multitask 1DCNN* 0.867 0.931 0.833 0.807 0.781 0.779 0.858 0.730 0.502 0.480 0.757

Multitask 1DCNN, No Spectral Trim 0.887 0.946 0.857 0.855 0.776 0.770 0.863 0.762 0.526 0.521 0.776

Singletask 1DCNN* 0.855 0.955 0.866 0.715 0.796 0.740 0.846 0.689 0.496 0.444 0.740

Singletask 1DCNN, No Spectral Trim 0.880 0.964 0.860 0.799 0.809 0.763 0.849 0.710 0.499 0.493 0.763

MLP 0.856 0.912 0.862 0.713 0.752 0.721 0.791 0.672 0.423 0.492 0.719

LSTM 0.704 0.809 0.748 0.685 0.578 0.640 0.732 0.615 0.352 ‑0.067 0.580

PLSR* 0.885 0.944 0.841 0.789 0.770 0.656 0.853 0.667 0.427 0.576 0.741

XGBoost 0.797 0.941 0.824 0.734 0.632 0.674 0.775 0.657 0.353 0.234 0.662

Ensemble 0.895 0.959 0.866 0.832 0.822 0.762 0.876 0.751 0.521 0.579 0.785

Table 4 Abs(Bias (%)) for various models on the test set

The results reported are the mean of three runs with different random seeds

Model LMA Narea SPAD Nmass Vcmax Vcmax25 J A gs Vcmax25/Narea Mean

Multitask 1DCNN 0.754 0.737 1.150 0.556 1.502 0.614 0.866 0.817 2.683 0.905 1.058

Multitask 1DCNN, No Spectral Trim 0.704 1.105 0.574 1.001 2.619 2.359 1.878 2.390 3.842 0.678 1.715

Singletask 1DCNN 2.307 1.242 0.947 2.510 3.000 0.779 1.081 3.735 6.968 0.780 2.335

Singletask 1DCNN, No Spectral Trim 1.183 0.465 0.935 2.466 1.809 1.808 1.652 2.366 4.559 0.738 1.798

MLP 1.878 0.596 0.921 3.120 1.765 1.509 1.692 2.232 2.752 0.582 1.705

LSTM 0.927 1.393 1.115 0.809 2.463 0.837 1.319 1.687 2.309 2.775 1.563

PLSR 0.322 0.291 0.725 0.934 3.664 0.977 0.475 1.816 5.049 1.389 1.564

XGBoost 0.477 0.007 1.198 2.251 3.421 1.647 0.333 0.079 2.463 3.654 1.553

Ensemble 0.912 0.328 0.941 1.060 2.630 0.229 0.588 2.085 4.899 0.416 1.409
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Discussion
Machine learning and artificial intelligence have already 
had a major impact across all aspects of our daily lives, 
from image recognition in social media to personalized 
digital media, robotics, and “big data” science. In crop 
physiology, plant phenomics, and crop breeding, deep 
learning algorithms such as neural networks have pri-
marily been used in computer vision applications. There 
has been a large amount of recent work on using deep 
learning methods to perform image-based phenotyp-
ing of plants, in particular using convolutional neural 
networks (CNN). These methods are useful for learning 
plant classification, segmentation, detection and other 
computer vision tasks required in plant phenotyping 
(Ubbens et al. [37]; Namin et al. [38]; Krause et al. [23]; 
Zhu et al. [39]).

Despite the popularity of deep learning in plant phe-
notyping and the proliferation of studies using statis-
tical approaches to derive plant traits from spectral 
data, these studies have almost exclusively used PLSR 
[6, 8, 10, 11, 13–16]. One exception is the recent study 
by Fu et  al. [8] that uses an ensemble of six machine 
learning algorithms to map hyperspectral reflectance 
measurements to physiological traits for transgenic 
tobacco plants. The machine learning algorithms they 
used include fully connected neural networks, support 
vector machines (SVM), least absolute shrinkage and 
selection operator (LASSO), random forest, Gaussian 
process (GP), and PLSR. Using an ensembling tech-
nique called stacked regression [40], they showed that 
the ensemble of the machine learning algorithms out-
performed PLSR alone by about  R2 = 0.1, above a base-
line  R2 of 0.60 to 0.65, based on  R2 between predicted 
and observed data in the test set [8]. Our work differs 

from this study in several ways. The transgenic tobacco 
material used for the training set in Fu et al. [8] displays 
a substantially higher range of variation in measured 
photosynthetic traits than in populations of genetically 
diverse crop species such as those used here. Generat-
ing trait values where the photosynthetic properties 
have been artificially altered thus provides a potentially 
easier prediction target for the models. Importantly, 
natural genetic variation for photosynthetic traits in 
wheat spans a much smaller range (commonly less 
than 30% of the mean for a population [4, 12]). Thus, 
using such an approach to screen for genetic varia-
tion in crop photosynthetic performance can be much 
more demanding of accurate predictive algorithms than 
detection of transgenic modifications.

Our study presents several novel advances in this state 
of the art, such as the use of a 1D CNN to extract local 
spatial patterns from the hyperspectral reflectance data. 
In addition, this study explores a range of approaches to 
reduce overfitting of models to the training set, explores 
multiple traits of agronomic importance extracted from 
our models, and expands the utility of our models by 
spectral trimming of training sets and the ability to train 
a single model for all traits extracted.

As a result of these novel modeling approaches, we 
found major advantages of deep learning approaches 
over PLSR:

1. A single deep learning model can be constructed for 
multiple traits, reducing time and complexity com-
pared to PLSR for model construction and runtime 
for algorithms.

2. A single neural network can leverage relationships 
between traits in developing a highly accurate model.

Table 5 REP for various models on the test set

The results reported are the mean of three runs with different random seeds

Model LMA Narea SPAD Nmass Vcmax Vcmax25 J A gs Vcmax25/Narea Mean

Multitask 1DCNN 7.611 8.446 7.430 8.764 18.723 14.004 10.417 14.485 32.590 15.897 13.837

Multitask 1DCNN, No Spectral Trim 7.026 7.463 6.887 7.610 18.907 14.294 10.252 13.586 31.792 15.243 13.306

Singletask 1DCNN 7.949 6.776 6.666 10.653 18.039 15.184 10.890 15.526 32.761 16.411 14.086

Singletask 1DCNN, No Spectral Trim 7.231 6.120 6.794 8.955 17.452 14.501 10.791 14.983 32.677 15.691 13.519

MLP 7.921 9.550 6.754 10.709 19.925 15.731 12.687 15.954 35.074 15.708 15.001

LSTM 11.337 14.058 9.089 11.222 25.840 17.848 14.338 17.269 37.151 22.766 18.092

PLS 7.076 7.650 7.264 9.179 19.181 17.477 10.639 16.069 34.937 14.350 14.382

XGBoost 9.425 7.849 7.630 10.314 24.261 17.011 13.144 16.320 37.131 19.289 16.237

Ensemble 6.767 6.543 6.655 8.188 16.843 14.549 9.763 13.902 31.965 14.301 12.948

Fig. 9 Effect of trimming spectral range of input values for prediction of key traits on the test set using the multi‑task 1DCNN model. Values ≥ 95th 
percentile are displayed in white. Results reported are the mean of three runs with different random seeds

(See figure on next page.)
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Fig. 9 (See legend on previous page.)
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3. Deep learning derived algorithms can cope with data 
sets of variable spectral range, potentially allowing 
adaptation of models to different, more affordable 
spectrometers, even imaging spectrometers [24].

The accuracy of the 3 best models tested in the current 
work is shown in Fig. 10 which compares the correlation 
between key predicted and observed traits on the test set 
using the CNN ensemble, multi-task 1DCNN and PLSR 
models. As observed in our previous work [4], the leaf 
biochemical and structural traits N and LMA were less 
challenging to predict than the rate of photosynthesis or 
the modelled parameters Vcmax and J. Our multi-tasking 
deep learning ensemble model produced an overall  R2 
value of 0.79, versus  R2 = 0.74 produced by PLSR, with 
considerable improvements in model performance for 
the photosynthetic parameters Vcmax25, J and A.

A major challenge for spectral prediction of crop traits 
by machine learning is the difficulty and cost of produc-
ing a sufficiently large training set. To generate a training 
set for the leaf structural and nitrogen traits, leaves must 
be harvested and dried, measured, weighed and in the 
case of N, milled and then the material passed through 
a mass spectrometer [4]. For modelled photosynthetic 

traits, time consuming gas exchange must be carried out 
on each leaf in the training set, taking up to 20 min per 
sample [7]. Indeed, a major attraction of this spectral 
reflectance method is to reduce the measurement time 
from hours to seconds for a suite of traits. If training sets 
are too small relative to the number of spectral bands 
collected, overfitting of data can limit the capacity for 
the models to predict into a previously unseen data set. 
Here we have investigated a number of solutions to this 
problem, namely optimisation of the number of training 
epochs and expanding the training set by data augmen-
tation. Both these approaches had significant value and 
have been incorporated into the model building (Addi-
tional file 1).

While a great deal of work has been published on PLSR 
modelling of spectral data, it is difficult to reproduce 
these models and use them to predict traits from new 
spectral data sets as the models themselves are rarely 
published or made available. To reuse these models, one 
commonly would have to download the training sets and 
recreate the models locally, with the corresponding risk 
that the resulting models are not identical: clearly not 
practical for most plant biologists. In the current work, 
we have made the code for the models available to the 

Fig. 10 Correlation between key predicted and observed traits on the test set using the ensemble (row 1), multi‑task 1DCNN (row 2) and PLS (row 
3) models. Pearson Correlation Coefficient, commonly used for ranking purposes, is reported
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reader and provided a web application containing stable 
versions of each model available under a creative com-
mons license. This allows researchers to upload spectral 
data and predict physiological traits in wheat (Wheat  
Physi ology  Predi ctor (shiny apps. io)) without suffering 
undue technical challenges, the risk of code or database 
deprecation, or inaccessible authors. We hope to create a 
community of users and develop and improve the models 
and traits predicted as data sets increase in volume and 
more training sets become available.
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