
Wang et al. Plant Methods           (2021) 17:76  
https://doi.org/10.1186/s13007-021-00777-8

RESEARCH

A systematic high‑throughput 
phenotyping assay for sugarcane stalk quality 
characterization by near‑infrared spectroscopy
Maoyao Wang1, Xinru Li1, Yinjuan Shen1, Muhammad Adnan1, Le Mao1, Pan Lu1, Qian Hu1, Fuhong Jiang1, 
Muhammad Tahir Khan3, Zuhu Deng1,2, Baoshan Chen1, Jiangfeng Huang1*   and Muqing Zhang1* 

Abstract 

Background:  Sugarcane (Saccharum officinarum L.) is an economically important crop with stalks as the harvest 
organs. Improvement in stalk quality is deemed a promising strategy for enhancing sugarcane production. However, 
the lack of efficient approaches for systematic evaluation of sugarcane germplasm largely limits improvements in stalk 
quality. This study is designed to develop a systematic near-infrared spectroscopy (NIRS) assay for high-throughput 
phenotyping of sugarcane stalk quality, thereby providing a feasible solution for precise evaluation of sugarcane 
germplasm.

Results:  A total of 628 sugarcane accessions harvested at different growth stages before and after maturity were 
employed to take a high-throughput assay to determine sugarcane stalk quality. Based on high-performance anion 
chromatography (HPAEC-PAD), large variations in sugarcane stalk quality were detected in terms of biomass composi-
tion and the corresponding fundamental ratios. Online and offline NIRS modeling strategies were applied for mul-
tiple purpose calibration with partial least square (PLS) regression analysis. Consequently, 25 equations were gener-
ated with excellent determination coefficients (R2) and ratio performance deviation (RPD) values. Notably, for some 
observations, RPD values as high as 6.3 were observed, which indicated their exceptional performance and predictive 
capability.

Conclusions:  This study provides a feasible method for consistent and high-throughput assessment of stalk qual-
ity in terms of moisture, soluble sugar, insoluble residue and the corresponding fundamental ratios. The proposed 
method permits large-scale screening of optimal sugarcane germplasm for sugarcane stalk quality breeding and 
beyond.
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Background
Sugarcane (Saccharum officinarum L.) is a perennial C4 
crop cultivated worldwide in subtropical and tropical 
zones. It is one of the most important industrial crops for 
sugar and ethanol production [1]. Moreover, sugarcane 
is an exceptionally productive commodity that is locally 
processed into value-added products and contributes to 
the economic welfare of cultivating areas.

Sugarcane stalk quality plays a decisive role in the 
profitability of this crop. Sugar is the primary industrial 
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product from sugarcane stalks. Strenuous efforts have 
been expended in recent decades to obtain more sugar 
from cane stalks. However, because of the complicated 
carbon partitioning and sugar accumulation mecha-
nisms, limited achievements have been realized [2–4]. 
Recently, advances in genomic tools and the decreasing 
costs of sequencing have enabled plant breeders to pur-
sue large-scale precision breeding [5, 6]. In addition to 
these advances, the use of high-throughput phenotyp-
ing is anticipated to play a significant role in accelerating 
improvement in crop genetics [7, 8].

Sugarcane stalk consists of water, sugar, and fiber. 
These three significant components result in dynamic 
variations in sugarcane stalks among different genotypes, 
growth periods, and meteorological conditions [9]. The 
dry mass of cane stalks is composed of sugar and fiber, so 
the sugar concentration is therefore influenced by parti-
tioning of carbon between the two [10]. Payment for sug-
arcane is closely related to the sucrose concentration in 
fresh stalks, which is determined by the concentration of 
stalk sucrose on a dry weight basis (g sucrose g/g DW) 
and moisture content (g water g/g FW). Moreover, sugar 
composition and the ratios among different sugar forms 
also exhibit variation between different genotypes and 
within a single genotype during sugarcane ripening [11, 
12]. For instance, with the rapid accumulation of sucrose, 
the content of reducing sugars (glucose and fructose) 
gradually decreases as sugarcane matures. Hence, the 
ratio of reducing sugars to sucrose is usually used to 
evaluate the degree of sugarcane maturity [13]. The pre-
cise analysis of these compounds in a high-throughput 
method may facilitate large-scale accurate phenotyping 
of sugarcane stem quality.

Near-infrared spectroscopy (NIRS) is highly efficient 
and has been applied for high-throughput screening to 
predict the properties and compositions of large num-
bers of samples [14], especially for phenotyping and 
genomic selection in crop breeding [15, 16]. It has been 
used for quality trait (such as juice soluble solids content, 
i.e., Brix, juice pH, firmness and water content) pheno-
typing in tomatoes [17]; estimation of sucrose, glucose, 
and fructose in sweet sorghum juice [18]; phenotyping 
of malt extract and protein content in barley [19]; assess-
ment of amino acid concentrations for quantitative trait 
locus (QTL) analysis in soybean [20]; quantitative moni-
toring of sucrose, reducing sugars and total sugar dynam-
ics for phenotyping of water-deficit stress tolerance in 
rice [21]; prediction of silage quality traits for QTL map-
ping in maize [22]; and herbage quality trait analysis 
[23]. In addition, NIRS has also been used to determine 
chemical compounds in sugarcane, which is used for 
analysis of phosphorus in leaves [24], estimation of min-
eral content under saline conditions [25], and estimation 

of cell wall components in stalks [26]. Some studies have 
also involved the use of NIRS calibration for sugar con-
centration in juices in terms of Brix or pol values [26, 
27] or commercial cane sugar contents [28]. However, 
little research has systematically explored NIRS assays 
for high-throughput characterization of sugarcane stalk 
quality with the compounds described above.

In this work, hundreds of samples were collected from 
various genotypes at different growth stages. Stalk qual-
ity was assessed by quantitatively analyzing the chemi-
cal composition and the corresponding ratio values in 
sugarcane stalk tissues via a high-performance anion 
chromatography (HPAEC-PAD) assay. Considerable 
variations in stalk quality were observed within these 
collections, allowing for consistent offline and online 
NIRS calibration in sugarcane. Therefore, this study pro-
vided systematic and multiple options-based assays for 
high-throughput screening of stalk quality, allowing for 
large-scale phenotyping of sugarcane germplasm during 
precision breeding.

Results and discussion
Precise sugar content determination in sugarcane stalks
HPAEC-PAD assay was performed to detect sugar con-
tent in sugarcane stalks, and the standard internal 
method was adapted for quantitative analyses. In this 
assay system, all target compounds (glucose, fructose, 
and sucrose) and the internal standard (lactose) were 
separated entirely within 3.5  min (Fig.  1A). Therefore, 
the method allowed for rapid analysis of sugar content in 
sugarcane stalks. The reducing sugar (glucose and fruc-
tose) content should be much lower than that of sucrose 
in mature stems of sugarcane [13, 29]. To obtain more 
accurate equations for quantitative analysis, a gap of 
10 times the difference in these concentrations was set 
between the sugars in the gradient mixtures used to pre-
pare standard curves. Expressly, the standard mixture for 
glucose and fructose was set to range from 0.25 to 8.0 μg/
mL, while sucrose ranged from 2.5 to 80 μg/mL (Fig. 1B). 
As a result, high R2 values were observed for the stand-
ard curves (glucose, fructose, and sucrose) of each sugar 
(Fig. 1C), which indicated the reliability of the quantita-
tive analysis. In addition, to determine if batch effects 
were present in these laboratory assays, the same sam-
ple was used for quantitative analysis of sugar content in 
different experimental batches. As shown in Fig. 1D, no 
significant differences were observed between batches. 
Thus, the results indicated that there was no batch effect 
in this quantitative assay, suggesting that all samples 
tested in the individual experimental batches could be 
combined for integrative analysis. Moreover, to check 
whether sugar was lost during the sample drying process, 
a comparative analysis was carried out to determine the 
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sucrose content in fresh and dried samples. No signifi-
cant differences were detected between them (Additional 
file  1: Figure S1). These results indicated the establish-
ment of a rapid and stable HPAEC assay that allows for 
accurate analyses of sugar content in sugarcane stalks.

Diverse biomass composition in collected sugarcane stalks
Biomass composition, especially the sugar content in 
cane stalks, is critical for classification of quality. To 
obtain samples with sufficient variability in biomass com-
position, sugarcane stalks of different genotypes were 
collected once per month from November 2018 to March 
2019. The sugar mass content (g/g, % dry weight) of the 
ground dry samples was determined by the HPAEC-PAD 
assay described above. Due to genotype diversity, large 
variations were detected in each collection (Fig.  2A). 
Samples in collection 2 showed the highest diversity for 
reducing sugars, sucrose, and total soluble sugars. Nota-
bly, continuous increases in sucrose and total soluble 
sugar contents (g/g, % dry weight) were observed from 
collection 1–5 (Fig.  2A), which was due to the increas-
ing maturation of the sugarcane stalks between Novem-
ber 2018 and March 2019. The different collections 
were combined to obtain a large sample set for NIRS 

calibration, as shown in Fig.  2B. The integrated sample 
set exhibited a more comprehensive range of variation 
and better normal distribution compared to the con-
stituents. In detail, the reducing sugar content (g/g, % 
dry weight) ranged from 0.48 to 10.96 (average value at 
2.87), sucrose ranged from 25.61 to 69.92, and total solu-
ble sugar content ranged from 27.02 to 73.88 (Fig. 2B). In 
sugarcane stems, soluble sugars and insoluble residues 
are central dry mass components formed by photosyn-
thesis. The insoluble residue was calculated by deduct-
ing the total soluble sugar content from the dry biomass. 
Even though the contents of insoluble residue (g/g, % 
dry weight) in the collected sugarcane samples gradually 
decreased from collection 1–5 (Fig. 2C), a normal distri-
bution ranging from 26.12 to 72.98 was observed in the 
combined sample set (Fig. 2D).

Generally, the proportion of chemical components in 
the sugarcane stalk is considered an important index for 
evaluating quality [30]. For example, the ratio between 
sugar and residues (Sug/Res) is closely related to the car-
bon partitioning patterns that primarily determine clean 
sugar production in sugarcane stalks. In comparison, the 
sucrose proportion in total soluble sugar (Suc/Total) is 
recognized as the critical index for judging juice purity. 
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The ratio between fructose/glucose (reducing sugars) 
relates to the physiological development of sugarcane 
[30, 31]. The values of these fundamental ratios described 
above were calculated to allow systematic characteriza-
tions of sugarcane stalk quality. As expected, considera-
ble variation in these ratios was observed in the collected 
sugarcane population (Fig.  2E, F). Notably, the Sug/Res 
value ranged from 0.37 to 2.83, and a high coefficient of 
variation (CV) value was observed (0.23), suggesting a 
broad diversity of carbon partitioning patterns in the 
sugarcane population. In contrast, the Suc/Total value 
showed limited variation because most of the collected 
samples had almost matured during the study period.

For commercial sugarcane production, sugarcane stalk 
quality is determined by sucrose concentration on a 
fresh weight basis (g sucrose g/g fresh weight). However, 
in fresh sugarcane stalks, the sugar concentration is not 
only related to the mass content of sugar in the dry mat-
ter but also depends on water content. The accumulation 
of % soluble sugars is reportedly associated with a con-
comitant decrease in moisture content [32]. An increase 
in sucrose content expressed in terms of fresh mass may 
occur even without the deposition of additional sucrose 
when culms become dehydrated due to low levels of 
soil moisture. Thus, sugarcane ripening expressed as % 
increase in sucrose content does not necessarily depict 

sucrose content [33]. Therefore, in sugarcane, the high 
sugar mass content (g/g, % dry weight) and low moisture 
content (g/g, % fresh weight) could be considered optimal 
criteria for judging sugar production.

This study also determined biomass concentrations in 
fresh sugarcane stalks according to their dry biomass and 
moisture content. Owing to the classic drying water loss 
method [34], moisture content diversity was detected 
in the collected sugarcane population (Fig.  3A, B). The 
water content of sugarcane decreased significantly from 
collection 1–5, which may be related to the gradual loss 
of water in the later stages of sugarcane growth (Fig. 3A). 
In contrast, with decreasing water content in sugarcane 
stalks, the sugar concentration (g/g, % fresh weight), 
mainly sucrose and total soluble sugar concentrations, 
gradually increased (Fig.  3B). However, the concentra-
tions of the residues (g/g, % fresh weight) seemed to 
be similar among the different collections (Fig.  3E). As 
expected, all of these compounds displayed consider-
able variation and led to a normal distribution in the 
combined sample set (Fig. 3B, D, F), which indicated the 
accurate calibration with NIRS.

NIRS data characterization in collected sugarcane stalks
DM540-CPS coupled with the MATRIX-F system has 
been designed explicitly for sugarcane quality control 
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(QC) analysis based on the related calibration model 
[35]. Sugarcane stalks were shredded and automatically 
passed to the NIR sensor for collection of spectral data 
within one minute. Instead of pressing out the cane juice 
for quantitative analysis, no juice was extracted from 
the sugarcane stalks. To establish the biomass composi-
tion calibration model for online quantitative analysis, 
near-infrared spectra for fresh sugarcane stalks in each 
collection were recorded on this system. As a result, 
broad diversity was detected among sugarcane samples 
(Fig. 4A). PCA was carried out to characterize the struc-
ture of the combined spectral population [36], as shown 
in Fig. 4B; no significant discrimination could be detected 
among these spectra from different collections. The con-
tinuous distribution of the combined spectral population 
further indicated that these samples could be integrated 
into a global NIRS calibration population. In addition, 
during the PCA, the global distance (GH) between each 
spectrum was calculated, and the GH outliers were elimi-
nated from the population during further NIRS modeling 
[37, 38].

As a comparison, an offline near-infrared spectros-
copy data scanning assay was applied to perform offline 
NIRS calibration. Dry ground samples from different col-
lections were scanned offline by a MATRIX-F equipped 
with a Q413 sensor. It was apparent that the spectrum 

of the ground dry sample was different from that of the 
fresh sample (Fig. 4C) but showed a pattern similar with 
that of a previous report on dry samples in sugarcane and 
some other species [39–42], which can be attributed to 
water loss [42, 43]. PCA results showed that the spec-
trum of the dry sample exhibited much higher variation 
(Fig. 4D), indicating that the offline assay spectra would 
be more conducive for NIRS modeling.

Determination of calibration and validation sets
A total of 562 samples in the combined sets were 
obtained for offline NIRS modeling. One fifth of the 
samples was randomly selected into the validation sets, 
while the remaining 449 samples formed the calibration 
sets. A descriptive statistical analysis was conducted to 
compare the calibration and validation sets in terms of 
the minimum (Min), maximum (Max), mean, standard 
deviation (SD), and coefficient of variation (CV) values 
(Table  1). Similarly, 628 samples were used for online 
NIRS modeling either for biomass composition content 
in dry weight (g/g, % dry weight) or in fresh sugarcane 
stalks (g/g, % fresh weight). Before NIRS modeling, 502 
samples were randomly placed into the calibration sets, 
and the remaining 126 were included in the validation 
sets (Table  1). As shown in Table  1, all samples in the 

Fig. 3  Variations in fresh biomass composition in sugarcane stalks. Moisture content (A) and frequency distribution (B) in sugarcane stalks; sugar 
content (C) and frequency distribution (D) in sugarcane stalks; insoluble residue content (E) and frequency distribution (F) in sugarcane stalks. 
Various genotypes of sugarcane were collected at five different times, and the numbers for each collection were 164, 162, 184, 70 and 48. Samples 
in different collections were merged together (n = 628) to calculate the distribution frequency of biomass component composition in B, D and F
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calibration and validation sets showed comparable statis-
tical distributions, allowing reliable NIRS modeling.

NIRS modeling for biomass compositions in sugarcane 
stalks
Partial least square (PLS) regression analytical meth-
ods packed in OPUS software were performed for NIRS 
modeling. The selected wavelengths of near-infrared 
spectroscopy were pretreated with derivative and scat-
ter correction methods before NIRS calibration. Internal 
cross-validation and external validation were applied to 
evaluate the calibration equations. During NIRS calibra-
tion, the root mean square error of calibration/cross-val-
idation/external validation (RMSEC/RMSECV/RMSEP), 
coefficient of determination of calibration/cross-vali-
dation/external validation (R2/R2cv/R2ev) and the ratio 
performance deviation (RPD) were obtained to select 
optimal equations.

Due to the absence of water absorption peaks in the 
near-infrared spectrum, offline NIRS calibration exhibits 

a great advantage in the determination of dry biomass 
composition [37, 38, 44]. In this study, the dry ground 
biomass of sugarcane stalks was used for offline NIRS 
modeling. The results indicated that all of the equations 
for sugar, residue content (g/g, % dry weight), and the 
resulting ratios exhibited high R2 values in calibration. 
This was especially true for calibration of sugar content 
(g/g, % dry weight), where the R2 value reached as high 
as 0.91 (Additional file 1: Table S2). In addition, most of 
the equations exhibited high R2cv and RPD values dur-
ing internal cross-validation, except for Fru/Glc, which 
showed a relatively low RPD value of 1.90 (Fig.  5 and 
Additional file  1: Table  S2). Moreover, additional exter-
nal validation was applied to evaluate the performance 
of the equations obtained. All of the equations exhibited 
high linear correlations between predicted and actual 
values. Glucose (g/g, % dry weight) showed the highest 
R2cv value of 0.92 (Fig. 5 and Additional file 1: Table S2). 
Notably, all of these equations showed the RPD value 
much higher than 2.0 during external validation (Fig. 5). 
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Generally, the RPD values (> 2.0) of the equations were 
attesting to their validity [45–47]; therefore, all of the 
equations obtained in this study for biomass composition 
(g/g, % dry weight) exhibited good predictive capabilities 
in offline NIRS detection systems.

For comparison, online NIRS modeling was carried out 
for prediction of dry biomass content (g/g, % dry weight) 
based on near-infrared spectra collected from fresh sug-
arcane stalks. The calibration results showed that even 
though the equations exhibited R2 values that were lower 
than those of the offline calibration, the results reached a 
substantially high level of R2 (ranging from 0.83 to 0.91) 

(Additional file  1: Table  S2). Based on cross-validation 
and external validation data, most of the other equations 
showed RPD values over 2.0, except for those for reduc-
ing sugars (glucose, fructose, and the total, g/g, % dry 
weight), which showed relatively low R2cv values ranging 
from 0.68 to 0.74 and RPD values ranging from 1.76 to 
1.98 (Fig.  6). Notably, the ratio between sugar and resi-
dues (Sug/Res) exhibited the best performance in online 
NIRS calibration. The highest R2, R2cv, and R2ev values 
were 0.91, 0.86, and 0.88, respectively (Fig.  6). As the 
ratio between sugar and residues (Sug/Res) was the key 
indicator of the carbon partitioning pattern in sugarcane 

Table 1  Calibration and validation sets for biomass components in sugarcane stalks

N, sample number; Min, minimum value; Max, maximum value; SD, standard deviation; CV, coefficient of variation

Calibration Validation

N Min Max Mean SD CV N Min Max Mean SD CV

Dry weight (offline)

 Sugars

  Glucose 449 0.10 4.76 0.98 0.69 0.71 113 0.22 5.55 1.29 0.99 0.77

  Fructose 449 0.38 4.49 1.72 0.72 0.42 113 0.77 6.38 2.00 0.96 0.48

  Reducing sugar 449 0.48 8.33 2.69 1.36 0.50 113 1.09 10.96 3.29 1.91 0.58

  Sucrose 449 25.61 69.92 49.68 5.69 0.11 113 25.93 60.35 48.51 5.98 0.12

  Total sugar 499 27.02 73.88 52.37 5.64 0.11 113 36.89 63.16 51.80 5.34 0.10

  Residues 449 27.83 72.98 47.93 5.46 0.11 113 26.12 63.11 47.83 6.13 0.13

 Ratio

  Sug/res 449 0.37 2.83 1.13 0.27 0.24 113 0.58 1.71 1.10 0.23 0.21

 Suc/total 449 0.81 0.99 0.95 0.03 0.03 113 0.70 0.98 0.94 0.04 0.05

  Fru/glc 449 0.67 8.65 2.12 0.78 0.37 113 0.74 4.03 1.89 0.65 0.34

Dry weight (online)

 Sugars

  Glucose 502 0.10 5.12 1.04 0.72 0.69 126 0.23 5.55 1.14 0.94 0.82

  Fructose 502 0.38 5.42 1.79 0.74 0.41 126 0.74 6.38 1.92 0.94 0.49

  Reducing sugar 502 0.48 10.54 2.83 1.41 0.50 126 1.01 10.96 3.06 1.82 0.60

  Sucrose 502 30.45 69.92 49.77 5.49 0.11 126 25.61 60.26 48.08 6.37 0.13

  Total sugar 502 33.33 73.88 52.60 5.41 0.10 126 27.02 63.43 51.14 5.83 0.11

  Residues 502 26.12 66.67 47.40 5.41 0.11 126 36.57 72.98 48.86 5.83 0.12

 Ratio

  Sug/res 502 0.50 2.83 1.14 0.26 0.23 126 0.37 1.73 1.07 0.24 0.22

  Suc/total 502 0.79 0.99 0.95 0.03 0.03 126 0.70 0.98 0.94 0.04 0.04

  Fru/glc 502 0.69 8.65 2.07 0.78 0.34 126 0.67 3.97 2.04 0.63 0.31

 Fresh weight (online)

  Moisture 502 65.10 81.74 73.30 2.43 0.03 126 65.40 82.68 73.52 3.12 0.04

 Sugars

  Glucose 502 0.03 1.34 0.28 0.20 0.71 126 0.06 1.38 0.30 0.24 0.81

  Fructose 502 0.10 1.22 0.48 0.20 0.43 126 0.19 1.26 0.50 0.23 0.47

  Reducing sugar 502 0.13 2.45 0.76 0.39 0.52 126 0.26 2.40 0.80 0.46 0.58

  Sucrose 502 7.29 21.47 13.31 2.05 0.15 126 5.14 17.67 12.79 2.46 0.19

  Total sugar 502 7.98 22.86 14.07 2.11 0.15 126 6.66 18.91 13.60 2.46 0.18

  Residues 502 6.90 20.24 12.63 1.66 0.13 126 9.50 18.07 12.89 1.84 0.14
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stalks, this NIRS method could provide a reliable high-
throughput assay for the large-scale selection of promis-
ing germplasms from the sugarcane population.

Moreover, near-infrared spectroscopy with fresh sug-
arcane stalks was applied for online NIRS calibration 
for prediction of biomass composition (g/g, % fresh 
weight). For modeling of sugar concentration (g/g, % 
fresh weight), the equations for sucrose and total soluble 
sugar exhibited the best performance; R2, R2cv, R2ev, and 
RPD values were consistently higher than those for the 
other equations obtained during calibration and related 
validations (Fig. 7A and Additional file 1: Table S2). Fur-
thermore, the equations for reducing sugar concentration 
(g/g, % fresh weight) also exhibited consistently high RPD 
values, which exceeded 2.0, indicating their excellent 
predictive capability (Fig.  7A). In particular, the equa-
tion for moisture content (g/g, % fresh weight) showed a 
perfect linear correlation between predicted and actual 
values, demonstrating reliable and accurate online pre-
dictive capability (Fig. 7B). In addition, the residue con-
tent (g/g, % fresh weight) also exhibited good predictive 

performance during calibration and two different kinds 
of validations, with consistently high R2 values (Fig. 7C).

In comparing online and offline strategies for mod-
eling dry biomass composition, the equations generated 
by offline calibration showed a higher prediction capacity 
(Figs. 5, 6). When different sample types were compared 
during online NIRS modeling, the biomass compositions 
of fresh samples exhibited much better performances 
(Figs. 6, 7). Therefore, the data suggested that NIRS strat-
egies could be selected for the sample type to generate 
the optimal equations for highly accurate predictions.

Integrative calibration for sugarcane stalk quality
In order to generate a global NIRS calibration, samples in 
calibration and validation sets were integrated to form a 
final calibration set. Since more samples were contained 
in the final calibration set, all of the newly generated 
equations exhibited much better performance than those 
described above. In this approach, the average R2 value 
increased from 0.88 to 0.93 for integrative calibration of 
offline prediction of dry biomass composition, and the 
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Fig. 5  Correlation analysis between predicted and true values for biomass component content (% dry matter) in sugarcane stalks, using offline 
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average RPD value increased from 2.3 to 3.2 during cross-
validation (Table 2 and Fig. 8A–C). For offline prediction 
of sugar content (g/g, % dry weight), all of the equations 
exhibited high R2 and R2cv values (over 0.90). The RPD 
values were higher than 3.0 for calibration and cross-
validation (Table  2 and Fig.  8A). Thus, these equations 
exhibited excellent determinations of sugar contents (g/g, 
% dry weight) via offline NIRS assay. The performance of 
online NIRS modeling for dry biomass composition (g/g, 
% dry weight) did not improve as much as that of offline 
NIRS modeling due to expansion of the calibration set. 
However, most of the equations exhibited RPD values 
over 2.0, permitting reasonable predictions (Table 2 and 
Fig.  8D–F). Integrative calibration processing enhanced 
the prediction capacity for online calibration of fresh 
biomass concentration (g/g, % fresh weight). Notably, 
apart from reducing sugars (g/g, % fresh weight), which 
showed R2 and R2cv values ranging from 0.82 to 0.93, all 
of the other equations obtained R2 and R2cv values much 
higher than 0.90 and high RPD values exceeding 3.0 

(Table 2 and Fig. 8G–I). Therefore, these newly generated 
equations could be applied for online quantitative analy-
sis of biomass composition by NIRS assay.

A considerable improvement in predictive capacity 
was observed in both offline and online NIRS modeling 
via integrative calibration. The newly generated equa-
tions should be applicable for prediction of biomass 
composition content. The suggested models provide 
multiple options for related high-throughput screening 
approaches. Notably, online calibration models can play 
a significant role, as they are substantially advantageous 
in high-throughput analysis of large-scale sample sets 
and offer better prospects for practical applications in the 
future.

Conclusions
A total of 628 sugarcane accessions were applied for 
determination of sugarcane stalk quality and NIRS cali-
bration. Large variations in sugar, moisture, insoluble res-
idues and related parameters were detected among these 
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collections, allowing for systematic offline and online 
NIRS calibrations. Finally, twenty-five models were gen-
erated with high R2, R2cv, R2ev, and RPD values, exhib-
iting excellent predictive capacity. In particular, online 
calibration models, owing to their uniquely inherent 
advantages in high-throughput detection, showed great 
prospects for application. Hence, this study provided 
a high-throughput strategy for large-scale screening of 
optimal sugarcane varieties and precision breeding.

Methods
Sample collection
A total of 628 sugarcane varieties representing a wide 
variation of sugarcane germoplasm were planted in the 
Fusui experimental field of Guangxi University, Nan-
ning, following the standard agronomic practices for the 
region. Sugarcane stalks were collected between Novem-
ber 2018 and March 2019 in five different batches. In each 
collection date (i.e., 1–5), a different number of varieties 
were harvested. Collections number 1, 2, 3, 4 and 5 com-
prised, respectively, 164, 162, 184, 70 and 48 varieties. 

These collections also represent different growth stages 
during sugarcane maturity. After removing leaves and 
tips, six randomly selected stalks of each sugarcane vari-
ety were used for online NIRS spectrum scanning and 
further analysis. In addition, the stalks of forty sugarcane 
genotypies were collected every 20 days from the jointing 
stage to the ripening stage for model optimization.

Near‑infrared spectral data collection
Online NIRS spectrum scanning
The randomly selected fresh stalks were immediately 
shredded using DM540 (IRBI Machines and Equipment 
Ltd, Brazil), blended and transmitted by CPS (Cane 
presentation system, Bruker Optik GmbH, Germany), 
and NIRS spectral data were simultaneously collected 
through the MATRIX-F (Bruker Optik GmbH, Germany) 
online system. The spectrum acquisition was taken by a 
full-band scanning mode at wavelengths ranging from 
4000 to 10,000 cm−1 with 4 cm−1 steps at room tempera-
ture. The spectral absorbance values were recorded as 
log1/R, where R is the sample reflectance. The obtained 
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continuous reflectance values were then averaged for fur-
ther analysis.

Offline NIRS spectrum scanning
The shredded fresh sugarcane samples were immediately 
collected and inactivated at 100  °C for 1  h to denature 
and deactivate the enzymes, as well as to prevent sugar 
degradation by microbial. Subsequently, the inactivated 
samples were dried under 60  °C until no loss of weight. 
The dried samples were ground over 40 mesh for offline 
NIRS spectrum data collection and further sugar content 

analysis. MATRIX-F equipped with a Q413 sensor head 
was used for contactless offline measurements. The 
reflectance of each sample was recorded and averaged for 
further calibration analysis.

Sugarcane stalk quality determination
Moisture content was determined by a standard loss on 
drying method [34]. Sugar content (g/g, % dry weight) 
was analyzed by high-performance anion chroma-
tography (HPAEC) method. Briefly, 0.100  g of ground 
dry sample was extracted with 40 mL ddH2O at 50  °C 

Table 2  Integrative calibration statistics for optimized equations generated for prediction of biomass components in sugarcane stalks

N, sample number; SCM, scatter correction methods; SD, standard deviation of reference value; RMSEC, root mean square error of calibration; R2, determination 
coefficient; RMSECV, root mean square err of cross validation; R2cv, determination coefficient of cross validation; RPD, ratio performance deviation; SNV, standard 
normal variate; SSL, straight line subtraction; FD, first derivative; FD + SNV, a combination of FD and SNV; FD + SSL, a combination of FD and SSL

Calibration Cross validation

Rank N SCM Spectrum range (cm−1) Mean SD RMSEC R2 RMSECV R2cv RPD

Dry weight (offline)

 Sugars (% dry weigh)

  Glucose 15 464 FD 3996–11,988 0.96 0.66 0.15 0.95 0.19 0.92 3.44

  Fructose 16 418 FD 3996–11,988 1.70 0.75 0.16 0.96 0.22 0.92 3.44

  Reducing sugar 15 457 FD 3996–11,988 2.74 1.48 0.33 0.95 0.42 0.92 3.50

  Sucrose 10 394 FD + SNV 3996–11,988 48.93 5.17 1.29 0.94 1.49 0.92 3.48

  Total sugar 10 410 FD + SNV 3996–11,988 51.85 5.27 1.32 0.94 1.51 0.92 3.49

  Residues 8 410 FD 4759.7–9411.4 48.16 5.34 1.59 0.91 1.68 0.90 3.18

Ratio

 Sug/res 10 425 FD 3996–7197.4, 1185.7–11,988 1.08 0.21 0.07 0.90 0.07 0.88 2.94

 Suc/total 13 536 SNV 4242.8–8894.5 0.95 0.03 0.01 0.87 0.01 0.83 2.45

 Fru/glc 13 427 FD 4104–7251.4, 8825.1–11,185.7 1.95 0.57 0.17 0.92 0.21 0.87 2.75

Dry weight (online)

 Sugars

  Glucose 19 407 FD 4890.8–11,185.7 0.89 0.49 0.18 0.88 0.21 0.82 2.33

  Fructose 12 391 FD 4890.8–7251.4, 8038.3–11,185.7 1.63 0.57 0.27 0.78 0.29 0.74 1.98

  Reducing sugar 22 401 FD 4242.8–4767.4, 5785.7–9411.4 2.46 1.02 0.38 0.87 0.44 0.81 2.31

  Sucrose 15 514 FD 4890.8–11,972.5 49.52 4.92 1.80 0.87 1.98 0.83 2.49

  Total sugar 13 514 FD 4890.8–11,185.7 52.30 5.01 1.84 0.87 1.96 0.85 2.56

  Residues 12 495 FD 4890.8–8825.1, 9612–11,972.5 47.52 5.01 1.75 0.88 1.86 0.86 2.69

Ratio

 Sug/res 24 473 FD 4104–11,972.5 1.10 0.20 0.06 0.91 0.08 0.86 2.70

 Suc/total 18 396 FD + SNV 4752–6834.8, 7344–9411.4 0.95 0.02 0.01 0.86 0.01 0.81 2.27

 Fru/glc 31 396 FD 4104–11,972.5 1.94 0.56 0.18 0.91 0.23 0.83 2.41

Fresh weight (online)

 Moisture 23 528 FD + SNV 4104–11,972.5 73.21 2.46 0.40 0.97 0.46 0.97 5.40

Sugars

 Glucose 34 415 FD 4104–11,972.5 0.25 0.15 0.04 0.93 0.06 0.86 2.66

 Fructose 18 405 FD + SNV 4104–11,972.5 0.46 0.18 0.07 0.86 0.08 0.82 2.36

 Reducing sugar 24 403 FD 4242.8–5276.6, 5785.7–9411.4 0.67 0.28 0.10 0.88 0.12 0.83 2.39

 Sucrose 13 453 FD + SSL 4782.8–11,185.7 13.27 1.91 0.45 0.95 0.49 0.93 3.88

 Total sugar 23 514 FD 4104–11,972.5 13.97 2.09 0.50 0.95 0.57 0.93 3.68

 Residues 23 459 FD 4104–11,972.5 12.66 1.55 0.43 0.93 0.48 0.90 3.21
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for 2  h. Additionally, 5.0  mL of lactose (1.0  mg/mL, 
Aladdin Biochemical Technology Co., Ltd., Shanghai, 
China) was added as an internal standard. The 50  mL 
sample was then filtered through 0.22  μm membrane 
filters for HPAEC detection.

ICS 5000+ system (Dionex/Thermo Fisher Scientific, 
Waltham, MA, USA) equipped with a pulsed ampero-
metric detector (PAD) and Carbopac™ PA1 column 
(250 mm × 4 mm, 10 μm) was employed for determin-
ing soluble sugar in sugarcane. The chromatographic 
conditions were as following: column temperature 
was set at 30℃; injection volume was 25 μL; eluent 
A: ddH2O; and eluent B: 500  mmol/L NaOH solution 
(Merck KGaA, Darmstadt, Germany). An isocratic elu-
tion procedure of 60% A and 40% B at the flow rate of 
2.0 mL/min was used for chromatographic analysis. The 
“Carbohydrates standard quad" waveform, as described 
in Additional file 1: Table S1, was employed for PAD.

For sugar content (g/g, % dry weight) calculation, 
the standard internal method was used for quantita-
tive analysis. Analytical curves were produced using 
sucrose, d-glucose, and d-fructose as standards. Simul-
taneously, lactose was added as the internal standard 
(The standard chemicals were purchased from Aladdin 
Biochemical Technology Co., Ltd., Shanghai, China). 
The peak area ratios between each sugar (glucose, fruc-
tose, and sucrose) and the internal standard were cal-
culated and corrected by the standard curves and then 
applied for its quantitative analysis. Insoluble residues 
content in sugarcane stalks was calculated by deducting 
the total soluble sugar from dry biomass. The biomass 
composition content (g/g, % fresh weight) was calcu-
lated based on its dry weight and the moisture content 
in fresh stalks. Biological triplicates were performed for 
each sample.
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NIRS calibration
The OPUS spectroscopy software (version 7.8, Bruker 
Optik GmbH, Germany) was used for data processing 
and NIRS calibration. To solve the problems associated 
with overlapping peaks and baseline correction, pre-
treatments, and wavelength ranges, selection of the raw 
spectral data was performed before calibration. Several 
kinds of spectral pretreatment methods were provided 
in OPUS software, including constant offset elimination 
(COE), straight-line subtraction (SSL), standard nor-
mal variate (SNV), Min–Max normalization (MMN), 
multiplicative scattering correction (MSC), first deriva-
tive (FD), second derivative (SED), combinations of the 
first derivative and straight-line subtraction (FD + SSL), 
standard normal variate (FD + SNV), and multiplica-
tive scattering correction (FD + MSC). The NIRS spectra 
were divided into multiple intervals and then reassem-
bled to obtain the optimal spectral region. A principal 
component analysis (PCA) was conducted to character-
ize the structure of the spectral population, and the GH 
outlier (GH > 3.0) samples were eliminated. Partial least 
square (PLS) regression was performed to generate cali-
bration equations. Internal cross-validation and external 
validation were carried out to test the performance of the 
generated calibration equations. The best equations were 
selected according to a high coefficient of determina-
tion of the calibration/internal cross-validation/external 
validation (R2/R2cv/R2ev), low root means square error of 
calibration/internal cross-validation/external validation 
(RMSEC/RMSECV/RMSEP), and high ratio performance 
deviation (RPD) values [37].
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Additional file 1: Table S1. Waveform used in PAD for HPAEC detect-
ing. Figure S1. The comparison of sucrose content in fresh and dried 
samples. A–B: sucrose content in fresh and dried sugarcane samples; CD: 
correlation analysis of sucrose content between fresh and dried sugarcane 
samples; E–F: residuals of sucrose content between fresh and dried sug-
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