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Abstract 

Background:  Surface roughness has a significant effect on leaf wettability. Consequently, it influences the efficiency 
and effectiveness of pesticide application. Therefore, roughness measurement of leaf surface offers support to the 
relevant research efforts. To characterize surface roughness, the prevailing methods have drawn support from large 
equipment that often come with high costs and poor portability, which is not suitable for field measurement. Addi-
tionally, such equipment may even suffer from inherent drawbacks like the absence of relationship between pixel 
intensity and corresponding height for scanning electron microscope (SEM).

Results:  An imaging system with variable object distance was created to capture images of plant leaves, and a 
method based on shape from focus (SFF) was proposed. The given space-variantly blurred images were processed 
with the proposed algorithm to obtain the surface roughness of plant leaves. The algorithm improves the current SFF 
method through image alignment, focus distortion correction, and the introduction of NaN values that allows it to be 
applied for precise 3d-reconstruction and small-scale surface roughness measurement.

Conclusion:  Compared with methods that rely on optical three-dimensional interference microscope, the method 
proposed in this paper preserves the overall topography of leaf surface, and achieves superior cost performance at 
the same time. It is clear from experiments on standard gauge blocks that the RMSE of step was approximately 4.44 
µm. Furthermore, according to the Friedman/Nemenyi test, the focus measure operator SML was expected to demon-
strate the best performance.
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Background
In light of concerns for the environment, resource and 
costs, the improvement of pesticide efficiency is a classi-
cal issue in agricultural engineering. Despite the variance 
in the definition of leaf wettability [1], in this paper, the 
term refers to the manifestation of submicron physico-
chemical interactions between leaf surface and solution 
droplet [2], i.e. the affinity of leaves to water or medicine. 
There exists a large number of studies on leaf wettabil-
ity that aim to enhance the adhesion of droplets on the 

surface of leaves, thereby averting the off-target depos-
its (e.g. rebound, roll, slide) that result from the adhesive 
characteristics of leaf surface. Leaf wettability may dif-
fer significantly among different species, varieties, and 
may even vary during the different stages of a life cycle 
[3]. Plant leaves, when observed at a high resolution, 
are rarely absolutely flat. Previous studies found it is the 
chemical composite and microstructure of epicuticular 
wax formations on leaves that determine leaf wettability. 
Increases in the surface roughness of a hydrophobic sur-
face normally lead to increases in the hydrophobic prop-
erties [4]. Contact angle is the angle where a liquid–vapor 
interface meets a solid surface (plant leaf in this case). 
Though contact angle is a common metric of leaf wetta-
bility, its contribution to intensive studies on wettability 
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is very limited. When quantifying the separate factors of 
leaf wettability, instead of contact angle, surface rough-
ness is used as a viable index, as wettability is a function 
of roughness.

In the manufacturing industry, surface roughness char-
acterization is standardized, whereas, unfortunately, a 
mature method for surface roughness characterization 
of leaves is lacking [5]. Pioneers of the field attempted 
to account for contact angle as a parameter in rough-
ness coefficient [6, 7] by contrasting the contact angle of 
rough surfaces with that of smooth surfaces, where the 
roughness coefficient is merely a relative and indirect 
assessment of roughness. Scanning electron microscope 
(SEM) provides high-resolution micrograph of leaf sur-
face, and with the help of computer vision techniques 
(e.g. fractal dimensional analysis [1, 8, 9], Fourier descrip-
tors [10, 11], visual classification [12, 13]), it is one of the 
viable options for obtaining leaf surface roughness. How-
ever, before inspection using SEM, the preprocessing of 
samples is cumbersome. Besides, the computer vision 
techniques based on two-dimensional SEM micrograph 
require significant correlation between surface texture 
and roughness. Atomic force microscope (AFM) can be 
used for highly accurate probing of the surface profile of 
leaves through a stylus [4, 14]. The adoption of AFM, like 
most of stylus-enabled methods of characterizing surface 
roughness in the manufacturing industry, may damage 
the surface, despite the creation of ameliorated non-con-
tact AFM that aims to alleviate the problem at the cost 
of accuracy. Besides, AFM can only gain access to one-
dimensional profile within an action cycle, and its z-range 
for leaves of many plant species is unacceptably narrow. 
Optical profiler, a profiler based on optical principles 
such as phase shifting interferometry, was used to render 
the surface of plant leaves [5, 15]. Using interferometry, 
speckles formed by white light interferer compose optical 
sections, and then the leaf surface can be reconstructed 
from these sections. This procedure is often automated 
and faster, but it may omit the most valuable information 
concerning the spatial organization of a surface [11].

The prevailing methods for characterizing leaf surface 
roughness, dependent on expensive instruments, have 
to deal with a number of shortcomings. To address the 
issue, this study proposes a new approach to measure 
the leaf surface roughness based on shape from focus 
(SFF). As a textured rough surface moves with respect 
to a fixed imaging system, variation of image sharpness 
is observed, enabling the recovery of the shape from the 
textured image. In this study, in order to reconstruct the 
surface topography where surface roughness is recov-
ered, micrograph sequences of leaves captured by high-
resolution digital camera with diverse focusing deviation 
are processed by the SFF algorithm. Cost of the method 

proposed in this paper is notably lower compared to the 
previous methods. Moreover, it utilizes 3-demensional 
information and features noncontact measurement pro-
cess. To evaluate performance of the method, results of 
the optical profiler are specified hereunder as reference.

Materials and methods
Materials
Customized steel gauge blocks that are precisely 1000 µm 
to 1100 µm ± 0.2 µm thick at intervals of 10 µm function 
as the reference standard. The pairwise combination of 
gauge blocks yielded 10 measurement results at different 
step height: from 10 to 100 µm by 10 µm. Leaves of lhe 
hybrid indica rice (Oryza sativa L.), grown from seed in 
an incubator, were sampled at seedling stage. The Rape 
(Brassica chinensis L.) was Zheda 618, which was bred by 
Zhejiang University. The cotton (Gossypium hirsutum L.) 
was upland TM-1. The tobacco (Nicotiana tabacum L.) 
was benthamiana.

A SFF imaging system (Fig. 1) was built in Agricultural 
Information Technology Institute of Zhejiang Univer-
sity (Hangzhou, PRC) to capture focused and defocused 
images. The system comprised an optical experimental 
platform (Fenghua Technology Co., Ltd, Shenzhen, PRC), 
an industrial RGB camera (Tuoriweiye Technology Co., 
Ltd, Shenzhen, PRC), a portable microscope (Meijing 
Electronics Co., Ltd, Shanghai, PRC), and a micromotion 
objective table (Hengyang Electronic Technology Co., 
Ltd, Guangzhou, PRC). The resolution of the RGB cam-
era is 3072 pixels × 2048 pixels. The portable microscope, 
functioning as a camera lens, is capable of magnification 
of ×10 . The micromotion objective table, installed on the 
optical experimental platform, shifts leaf vertically in the 
motion range of 12.5 mm and accuracy of 0.5 µm. Man-
ual adjustment to ratchet knob lifts the table in precision, 
thus creating defocus. The camera was mounted on the 

Fig. 1  The shape from focus imaging system
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portable microscope, upside down towards the table, and 
the images were transmitted to computer via Ethernet.

Wyko NT9100 (Veeco, NY, US) optical profiler was 
utilized to measure leaf roughness as a comparison. This 
instrument, suitable for measuring 3d surface topog-
raphy, has a vertical scanning range of 0.1nm–10  mm. 
The measurement was made in College of Optical Sci-
ence and Engineering, Zhejiang University (Hangzhou, 
PRC), where the optical profiler was located. Upon meas-
urement, the defocused images were immediately cap-
tured, and the leaves were moved to the optical profiler 
for observation. Thanks to the supporting software, the 
three-dimensional structure was reconstructed and the 
surface roughness was obtained with ease.

Shape from focus
The notion of shape from focus, also known as depth 
from focus (DFF), is hardly new. It involves a classic prob-
lem in computer vision. SFF is widely studied as a passive 
method of estimating depth or shape from monocular 
focal cues [16–19].

With a fixed setting of focus length, observations along 
the z-axis are different in blurriness, which is one of the 
most obvious cues for human observers to understand 
depth in a two-dimensional image. As to the micro-
scopic level, when projecting to the sensor plane (Fig. 2), 
the radiation of each point on the object spread onto a 
fuzzy circle, which is usually expressed by point spread 
functions (PSFs). In particular, if the focus locates on the 
sensor plane, the diameter of the fuzzy circle is infinitely 
close to zero. In this case, since the sensor plane and the 
focal plane are coincident, the projection of point M is 
an ideal point. For a constant focal length f and a fixed 
location of lens and sensor plane, when the objects move 
away from the lens, the focus of the point M′ moves 

towards the lens, and a fuzzy circle with the diameter of c 
is synchronously detected on the sensor plane.

Methods known as depth from defocus (DFD) or shape 
from defocus (SFD) aim to compute the distance between 
the defocused object points and the sensor plane by esti-
mating the diameter of fuzzy circles. These methods 
are speedy but inaccurate. Furthermore, when adopt-
ing them, intrinsic and extrinsic parameters must also 
be determined in advance. According to SFF theories, 
a focused image surface (FIS) is defined as the surface 
formed by a set of points at which the object points are 
focused by the lens [20]. FIS is determined on the basis 
of the sharpness at each pixel in a sequence of images 
with constantly varying focus levels, and a focus measure 
function or operator is applied to compute the sharpness. 
Conventionally, FIS comprises pixels where the corre-
sponding frame gives the maximal sharpness among the 
images, but it is also true that certain applications fea-
ture optimized techniques (e.g. quadratic interpolation, 
Gaussian interpolation) for smooth surfaces. For exam-
ple, quadratic interpolation method determines a quad-
ratic function by 3 maximal focus measures, and the final 
maximal sharpness should be ideally located at the axis 
of symmetry. When FIS is available, all corresponding 
points on the object surface can be retrieved.

Image registration
Image registration focuses on aligning two or more 
images of the same scene through geometrical warping 
and overlapping. Research schemes of most SFF studies 
ignore the differences in view-of-field during the adjust-
ment of focus level, as image registration comes with 
considerable costs. However, this study proposes the 
correction of the pixel offset, while taking into account 
the trade-off between the accuracy requirement and the 
computational complexity in roughness measurement of 
leaf surface. An illustration of the image registration pro-
cess is given in the following paragraphs.

First, the relevant features are detected using Speed-
Up Robust Feature (SURF) [21]. Owing to its rapidity and 
robustness, SURF has extensive applications in image 
registration. The strategies in relation to Gaussian pyra-
mid and Harr wavelet make the SURF descriptor scale- 
and rotation-invariant. In vast image registration tasks, 
SURF outperformed other prevailing methods. Thus, this 
paper proposes the use of SURF as the feature detector in 
this scheme. For each image, SURF algorithm yields doz-
ens of features expressed by 128-deminsional vectors.

Second, image features are matched based on the cor-
respondence between the features within pairs of images. 
The so-called correspondence is a function, which char-
acterizes the spatial relationship, of two features. As a 
frequently used distance, Euclidean distance was adopted Fig. 2  Convex lens model with objects motion along with z-axis
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in this scheme. By calculating the distance of every pair 
of features between neighbor frames, the brute-force 
matches can be obtained. The amount of matches indi-
cates the clarity of the images to some extent. Points on 
images with few matches are largely defocused, which is 
not appropriate for SFF. Therefore, for the sake of arith-
metical simplification in subsequent procedures, the 
images with insufficient matches were removed from the 
dataset, and the threshold η was set according to the tex-
ture richness of leaf surface.

Then, homography matrices are estimated from the 
matches. Theoretically, the distortion of images resulting 
from the adjustment of focal level is nothing but scaling, 
yet in practice, it is clear that miscellaneous errors may 
incur other forms of distortion. The homography matrix 
denotes the mapping relation between two image coor-
dinates, which is a 3 × 3 matrix, and is independent of 
scalar multiplication. Thus, 8 parameters should be esti-
mated for each homography matrix, i.e. at least 4 matches 
are needed before an image can be transformed. In addi-
tion, Random Sample Consensus (RANSAC) works as a 
filter of matches, considering the high sensitivity of hom-
ography to noise.

At last, the homography matrices are applied to 
image transformation. In this stage, all of the remaining 
images (meeting the limit of the aforementioned thresh-
old η ) are transformed into the same image coordinate 
(e.g. that of the first image). Linear interpolation is used 
to deal with non-integer pixel indices that occurred due 
to the spatial discreteness of digital images. After the 
transformation, the pixel offsets among the image frames 
are eliminated so that an overlapping region emerges. 
For each image frame, the edge outside the overlapping 
region should be trimmed off, thus ensuring that there is 
no absent pixel.

Focus measure
Focus measure plays a dominant role in SFF since it pro-
duces information that are fundamental for FIS. A great 
number of focus measure operators have been proposed 
in previous studies. Pertuz et al. [17] offered a summary 
of these focus measure operators by grouping them 
into 6 families. Though it is difficult to determine which 
operator family performs best under any given imaging 
conditions, the Laplacian family demonstrates the best 
performance overall. Some operators working in fre-
quency domain, widely used in autofocus, also showed 
sound performance results; nevertheless, the time-con-
suming Fourier transformation offers little support to 
solving SFF problems since focus measure is determined 
in local windows.

In this paper, performances of four spatial focus meas-
ure operators were compared.

Energy of Laplacian (EL)
Energy of Laplacian considers the second derivative of 
images. It is calculated by summing the pixel intensity of 
an image convolved with a Laplacian mask. This step is 
carried out within a local window for denoising purpose, 
which is expressed by the following formula:

wherein, L(·) denotes Laplacian transformation; f (·) 
denotes the pixel intensity of image; and �(·) denotes the 
adjacent region (same below).

Sum‑modified Laplacian (SML)
Laplacian operator calculates the second partial deriva-
tives of images with respect to x and y, which can be 
either positive or negative. Therefore, Energy of Laplacian 
may show a small response at pixels where the two partial 
derivatives at orthogonal directions cancel out. Different 
from Energy of Laplacian, Sum-modified Laplacian sums 
the energy of a window for an image convolving with a 
modified Laplacian (ML) operator, which is defined as 
the sum of absolute value of second partial derivatives:

wherein, Lm(·) denotes modified Laplacian 
transformation.

Tenenbaum gradient (TG)
Tenenbaum [22] proposed a focus measure operator 
based on Sobel operator, which is named Tenenbaum 
gradient. Sobel operator, known as an edge detector, has 
two forms which produce the first derivative of images 
with respect to x and y, respectively. By summing the 
length of gradient within a window, Tenenbaum gradient 
is obtained by the following formula:

(1)EL(u, v) =
∑

(x,y)∈�(u,v)

L(x, y),

(2)L(x, y) =
∂2f (x, y)

∂x2
+

∂2f (x, y)

∂y2
.

(3)SML(u, v) =
∑

(x,y)∈�(u,v)
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(5)TG(u, v) =
∑

(x,y)∈�(u,v)

G(x, y),

(6)G(x, y) =
√

G2
x(x, y)+ G2

y (x, y).
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Gray level variance (GLV)
Gray level variance is a statistic operator based on the 
assumption that points at FIS come with the maximal 
gray level variance. Naturally, GLV is also calculated in 
local windows:

wherein, µ denotes the mean pixel intensity of the 
window.

FIS searching
The principal and most straightforward way to determine 
FIS is to search for the maxima of focus measure at each 
pixel [23]. Though implementation of such an approach 
is both fast and simple, the resolution of FIS depends on 
the movement interval of object with respect to the image 
detector, i.e. the reconstructed surface looks discrete. A 
great many of SFF studies inclines to interpolate the points 
nearby the maximum. In such studies, effective interpola-
tion techniques including quadratic [24] and Gaussian 
[25] interpolation have been extensively adopted. Interpo-
lation methods aim at smoothing FIS, yet, like the former 
approach, a maxima caused by noise may lead to its dis-
tortion. Besides, though closed form solutions can be pro-
vided for the specific situations, interpolation methods are 
often time-consuming. Some researchers optimized the FIS 
using tensor voting [26, 27] but the algorithm iterates every 
token from depth cloud and computes the eigenvalues, 
which is not favorable to addressing the current problem.

This paper proposed a simple but efficient and robust 
method for FIS search using weighted average of stereo 
blurred focus measure.

The values of focus measure for each pixel were 
obtained by applying the aforementioned focus measure 
operators according to the specified procedures. Consid-
ering the potentially abnormal values (due to noise), the 
original values of focus measure were blurred with a ste-
reo mean filter.

The blurred focus measure is defined as:

wherein, N denotes the number of pixels in the window; k 
denotes the image frame of the focus measure; FMz (x,y) 
denotes the focus measure at pixel (x, y) for image frame 
z; and �′(·) denotes the adjacent region of the pixel over 
frames. Here, �′(·) is a 3× 3× 3 window.

In order to achieve fast and precise FIS search, infor-
mation of the focus measure should be fully utilized 
without increasing the difficulty of computation. With 

(7)GLV(u, v) =
∑

(x,y)∈�(u,v)

(f (x, y)− µ)2.

(8)BFMk(i, j) =
1

N

∑

(x,y,z)∈�′(i,j,k)

FMz(x, y).

respect to pixels in different image frames at the same 
pixel coordinate, values of focus measure were sorted 
from largest to smallest. Then, FIS is calculated by the 
following formula:

wherein, ϕm denotes the first m frame numbers of sorted 
focus measure values; δ denotes the interval distance 
between neibour frames; and σϕ denotes the standard 
deviation of ϕm . The coefficient � is a manual setting 
parameter. The experimental value of � is 0.5. NaN (Not a 
Number) represents an invalid value.

Formula (9) indicates that FIS is determined by the 
weighted average of ϕm , where the blurred focus meas-
ure functions as the weight. The method proposed in 
this paper considers the score of image frame where 
FIS can possibly be found, and yields the comprehen-
sively predicted location. A large σϕ indicates the unre-
liability of focus measure. Therefore, fixing the invalid 
values for FIS on these pixels is an approach to prevent 
them from getting involved in the subsequent computa-
tion. Figure 3 shows the performance of the proposed FIS 
search method on cotton leaf surface. It is evident that 
this method is less sensitive to maximum compared with 
interpolation methods.

In most cases of application, the SFF procedures will 
end upon finding FIS, and the subsequent measurement 
of surface feature parameters is taken for granted. In prac-
tice, an abnormal bulge emerges from the central region 
of the reconstructed surface. Drift of FIS is potentially 
ubiquitous in SFF due to defects in relation to the fabri-
cation of camera, the assembly accuracy of microscope 
and the sensitivity discrepancies of sensing units. For 
example, if the lens is not in ideal shape, the lights, which 
should have intersected on the sensor plane, will inter-
sect forward or backward. It will therefore result in a SFF 
offset. Although this effect is often negligent, it becomes 
significant in microscopic applications. Essentially, the 
distortion can be regarded as the manifestation of bar-
rel distortion in depth. Universality of barrel distortion in 
short focus lens accounts for the significance of FIS dis-
tortion in microscopic applications. To eliminate such dis-
tortion, the difference of the primary FIS and a drift field 
substitute the primary FIS, in which the drift field denotes 
the strongly blurred FIS of a flat surface. This is not a 
cumbersome process of duplication, as the measure of the 
drift field, i.e., system calibration, is completed once for all 
upon establishment of the system. Figure 4 demonstrates 
the effective correction of a flat surface with scratches of 
aluminum alloy. It is clear that an apparently abnormal 
uplift of FIS is restrained in the undistorted image.

(9)FIS(i, j) =

{

NaN, σϕ > �m
δ
∑

k∈ϕm
kBFMk (i,j)

∑

k∈ϕm
BFMk (i,j)

, σϕ ≤ �m
,
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Results and discussion
Comparison of surface rendering
Plant leaves of various species were observed in both 
optical profiler and the SFF system. Figure  5 compares 
the surface renderings of these two methods. In this 
comparison, the height of surface gets larger as the color 

shifts from cool tone to warm tone, and the SML opera-
tor was chosen for focus measure in SFF renderings. It 
should be noted that it was very challenging to present 
the identical region of interest in the two methods due to 
differences in field of view. Thus, a qualitative evaluation 
had be conducted according to the comparison of overall 
performances.

Plant leaves normally present fractal structures. As 
is shown in Fig. 5a, b, the surface of rice leaf comprises 
complex microstructures including parallel wavy veins, 
hairy trichomes, quasi-1D arranged micropapillae and 
patchy protuberances. An inherent drawback of SFF 
lies in its mediocre performance for details and abrupt 
changes due to local windows in focus measure. In the 
SFF rendering, comparatively speaking, theses details are 
suppressed; certain detailed information are preserved 
nonetheless. SFF rendering demonstrates a distinctly 
higher altitude at areas where the trichomes and protu-
berances were expected. Relatively speaking, the veins 

Fig. 3  FIS searching on the section of cotton leaf image frames. Focus measure of the transversal are shown using pseudo color map, which 
increases as tone turns from cool to warm. Flecked with black points marked as NaN, the curve formed by white points is the FIS to search

Fig. 4  Pseudo-color map of FIS comparison before and after 
correction by a drift field. Pixel height increases as tone turns from 
cool to warm. a Distorted FIS. b Undistorted FIS

Fig. 5  Computer rendering of rice leaves. a SFF rendering. b Optical profiler rendering



Page 7 of 11Zhang et al. Plant Methods           (2021) 17:72 	

are well defined in SFF reconstruction since larger scale 
of scenes are less sensitive to the local windows.

It is evident that the field of view of optical profiler is 
much smaller than that of the SFF system. The optical 
profiler renders no more than one vein per observation, 
while the SFF system offers a rendering of several veins 
thanks to its advantage of a wider field of view. Since the 
wavy veins on rice leaves are considerably different in 

size, the accuracy of roughness measurement for opti-
cal profiler is largely dependent on the selection of sin-
gle vein. By contrast, such dependence abates in the SFF 
system.

Figure  6 shows the computer renderings of rape, 
tobacco, cotton and rice leaf surface. Dicotyledons are 
characterized by reticular veins. Leaf surface trends to be 
flat where the veins are sparse, a fact that has been well 
demonstrated by the renderings.

Table 1 shows the areal roughness of plant leaf surface 
displayed in Fig. 6. If A is the area where the roughness 
is measured, then the areal surface roughness based on 
arithmetical mean height is calculated by the following 
formula:

Quantitative analysis on gauge blocks
The measurement of identical micro-surface profile on dif-
ferent instruments is quite a challenge. In order to quantify 
the performance of the SFF system for each FIS method, 
experiments were conducted via pairwise combination of 
the gauge blocks along their edges, creating a step at the 
shared border. Figure 7 shows the diagram of experimen-
tal measure where the microscope aimed at the seam of the 
blocks. The pairwise combination of gauge blocks yields 
10 measurements at different step height: 10–100  µm at 
intervals of 10 µm. For each measurement, approximately 
10,000 samples were selected from the FIS at the two step 
faces, respectively, and the height of the step was calcu-
lated. The number of samples depends on the alignment 
and NaN values since the sampling was conducted in 
columns. Root Mean Square Error (RMSE) and Pearson 
correlation were computed using ground truth and recon-
structed depth map. The smaller the RMSE and the more 
significant the correlation, the better the performance. If 

(10)Sa =
1

A

∫

(x,y)∈A

∣

∣FIS(x, y)
∣

∣ dx dy.

f(m, n) and h(m, n) are the computed value and the actual 
value of the step height for the n-th sample of the m-th 
measurement, then the RMSE and the Pearson correlation 
r are expressed by the following formula:

Figure  8 shows the comparison between the proposed 
SFF method and traditional SFF method concerning 
RMSE and Pearson correlation with different focus meas-
ure operators. It is evident that the proposed SFF method 
demonstrates superior performance as it features smaller 
RMSE and more significant correlation. It is believed 
that the amelioration on distortion contributes to the 
significant improvement on performance. Moreover, 
system robustness was improved by the introduction of 
NaN value and the design of weighted average in focus 
measure. Regarding the proposed SFF method, the SML 
operator outperformed the other operators: the RMSE of 
SML is lower than 4.44 µm. Correlations of the four oper-
ators are close to 1, indicating high correlation between 
the estimated depth and the ground truth, despite the 
relatively smaller correlation shown by the GLV operator.

Friedman test (a non-parametric hypothesis test) and 
post-hoc Nemenyi [28] test were adopted as a further 
evaluation of the focus measure operators. If ri is the 
average rank of i-th algorithm, and k is the number of 
algorithms, and N is number of datasets, the statistic

is subject to F distribution, wherein

Here, the performance of the four operators for each 
dataset were ranked, and the average rank of each oper-
ator was calculated. Table  2 shows rankings of the four 
operators, and unsurprisingly, the SML operator ranks 
first in most of datasets. According to Formulas (13, 14), 
the statistic can be calculated: τF = 26.714 . Taking the 
significance level α = 0.1 , the critical value of F distribu-
tion is tα = 2.490 < τF . Here, null-hypothesis is rejected, 

(11)RMSE =

√

√

√

√

1

MN

M
∑

m=1

N
∑

n=1

(

f (m, n)− h(m, n)
)2
,

(12)r =

∑M
m=1

∑N
n=1

(

f (m, n)− f̄
)(

h(m, n)− h̄
)

√

(

∑M
m=1

∑N
n=1

(

f (m, n)− f̄
))(

∑M
m=1

∑N
n=1

(

h(m, n)− h̄
))

.

(13)τF =
(N − 1)τχ2

N (k − 1)− τχ2

,

(14)τχ2 =
12N

k(k + 1)

(

k
∑

i=1

r2i −
k(k + 1)

2

4

)

.
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Fig. 6  Computer renderings of leaf surface of different species (rape, tobacco, cotton and rice from top to bottom). The first column is Computer 
renderings with texture. The second column is Computer renderings with depth in pseudo color map



Page 9 of 11Zhang et al. Plant Methods           (2021) 17:72 	

and it can be said that performance of the four operators 
differs significantly.

The post-hoc Nemenyi test distinguishes the algorithms 
by pairs. Two algorithms are significantly different if the 
difference of corresponding average ranks reaches the criti-
cal difference

If the confidence is α = 0.1 , the critical value is 
qα = 2.291 according to Tukey distribution. Then the 
critical difference is CD = 1.323 . Figure  9 shows the 

(15)CD = qα

√

k(k + 1)

6N
.

Table 1  Areal surface roughness of the plant leaves

Plant leaf Sa/µm

Rape 7.94

Tobacco 24.43

Cotton 16.75

Rice 18.86

Fig. 7  Diagrammatic sketch of FIS measure on gauge blocks

Fig. 8  RMSE and Pearson correlation of proposed SFF and traditional SFF using four different focus measure operators
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Friedman/Nemenyi test of the four focus measure opera-
tors. Normally, Laplacian family performs better than 
the other operators, a fact that agrees with results from 
previous studies [17]. The SML operator showed the best 
performance in all datasets among the operators, and 
its performance differ significantly from that of TG and 
GLV.

Discussion on size of local window in focus measure
The recurrent blur techniques in the algorithm specified 
in this paper were used as denoising modules, but the lost 
details may result in low resolution and inaccurate meas-
urements. In subsection Focus measure, �(·) is defined as 
the adjacent region implemented by a local window. The 
size of local window is a trade-off between denoising and 
resolution. To find an appropriate window size, RMSE of 
height measurement with respect to side length of square 
local window (Fig.  10) was demonstrated. The window 

side length was tested from 5 to 95 pixels by 10 pixels, 
and from 11 to 101 pixels by 10 pixels. In addition, size of 
3, 7, 9 pixels were included for distinct revealing.

In Fig.  10, a reasonably decreasing trend can be 
observed concerning RMSE and the corresponding 
standard deviation as the side length of local window 
grows. While large window size causes information loss, 
small window size leads to increased noise, which inhib-
its the number of valid depth of pixels because of NaN. 
Therefore, in order to reserve as much information as 
possible for the sake of high accuracy, it is preferred to 
select a value where RMSE tends to be flat (e.g. 25 pixels 
in the algorithm proposed herein).

Though the FM operator SML and dataset D5 are 
adopted in this subsection as a typical pattern, similar 
results are also available for other conditions.

Conclusion
This paper summarized the prevailing methods for meas-
uring leaf surface roughness through a statement of mer-
its and demerits. A new method based on shape from 
focus was proposed, and the SFF system was established. 
Different from traditional SFF used in macrocosm, the 
proposed method requires image registration as preproc-
essing. According to the experiments, the introduction 
of distortion correction and focus measure optimization 
succeeded in increasing the accuracy and robustness. 
The performance of the 4 focus measure operators were 
quantified by RMSE and Pearson correlation on the step 
between the two precise gauge blocks. The proposed 
method with the SML operator reached the best per-
formance on RMSE and Pearson correlation, which are 
4.44  µm and 0.988. Freidman test and post-hoc Neme-
nyi test also indicated that the SML operator performed 

Table 2  Rank table of four operators

Dataset EL GLV SML TG

D1 2 4 1 3

D2 3 4 1 2

D3 1 4 2 3

D4 1 4 2 3

D5 2 3 1 4

D6 1 4 2 3

D7 3 4 1 2

D8 3 4 1 2

D9 1 4 2 3

D10 2 4 1 3

Average rank 1.9 3.9 1.4 2.8

Fig. 9  Friedman/Nemenyi test of four focus measure operators in our 
proposed method

Fig. 10  RMSE of height measurements with respect to different 
length of local window. The red area denotes the standard deviation
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best among the 4 operators, exhibiting significant supe-
riority, especially when compared with EL. Roughness 
measurement of leaf surface based on SFF was not been 
fully explored, but its potential in plant phenotyping was 
demonstrated. We believe the method has broad research 
prospect in the field of plant phenotyping. Future studies 
may aim to optimize the integration of the SFF system, 
and to improve the time-consuming algorithm for practi-
cal adoption.
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