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Abstract 

Background:  The study of plant phenotype by deep learning has received increased interest in recent years, which 
impressive progress has been made in the fields of plant breeding. Deep learning extremely relies on a large amount 
of training data to extract and recognize target features in the field of plant phenotype classification and recognition 
tasks. However, for some flower cultivars identification tasks with a huge number of cultivars, it is difficult for tradi-
tional deep learning methods to achieve better recognition results with limited sample data. Thus, a method based 
on metric learning for flower cultivars identification is proposed to solve this problem.

Results:  We added center loss to the classification network to make inter-class samples disperse and intra-class 
samples compact, the script of ResNet18, ResNet50, and DenseNet121 were used for feature extraction. To evalu-
ate the effectiveness of the proposed method, a public dataset Oxford 102 Flowers dataset and two novel datasets 
constructed by us are chosen. For the method of joint supervision of center loss and L2-softmax loss, the test accuracy 
rate is 91.88%, 97.34%, and 99.82% across three datasets, respectively. Feature distribution observed by T-distributed 
stochastic neighbor embedding (T-SNE) verifies the effectiveness of the method presented above.

Conclusions:  An efficient metric learning method has been described for flower cultivars identification task, which 
not only provides high recognition rates but also makes the feature extracted from the recognition network interpret-
able. This study demonstrated that the proposed method provides new ideas for the application of a small amount 
of data in the field of identification, and has important reference significance for the flower cultivars identification 
research.
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Background
As a popular category of plants, cultivars identification of 
ornamental plants is an important basis for reproduction, 
cultivation, application, and breeding. With the rapid 
development of Artificial Intelligence (AI), the study of 
plant phenotype has made a series of important progress 
[1–8] as a science of studying plant growth, performance, 

and composition. Image processing methods based on 
computer vision are increasingly applied to the study of 
plant phenotype. Bonnet [3] evaluating how state-of-art 
computer vision systems do perform in identifying plants 
compared to human expertise. The results show that the 
machine can clearly outperform beginners and inexperi-
enced test subjects, which proves the feasibility of identi-
fying plants based on computer vision.

Flowers with ornamental phenotype have brought 
a pleasing visual feast to humans due to their unique 
shapes, rich colors, and varied textures, which is impor-
tant for flower phenotype research through computer 
vision. Recent studies have applied deep learning-based 
methods to flower recognition and made a series of 
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important progress [9–14]. In particular, Lee [9] studied 
Convolutional Neural Networks (CNN) to learn unsu-
pervised feature representations for 44 different plant 
species. Deep Convolutional Neural Networks (DCNN) 
based hybrid method is applied to flower species classi-
fication on Flower17 and Flower102 datasets in [13]. Liu 
[14] proposed a method of large-flowered chrysanthe-
mum cultivar recognition. In the context of deep learning 
[15], at least thousands of training samples are required 
for each class to saturate the performance of DCNN on 
known classes. However, in practice, due to privacy pro-
tection restrictions, it is difficult to have a large amount 
of labeled samples, such as face recognition. For orna-
mental plants, not all angles have research value, which 
like the task of face recognition that a complete frontal 
view of people is required. Due to the limitation of the 
viewing angle, both tasks are difficult to obtain a large 
number of variable data for training. Such as chrysan-
themum, only one or a few images of each cultivar is 
effective for further research despite numerous cultivars. 
Besides, due to the poor generalization ability of the clas-
sification neural network, it is difficult for the model to 
learn to identify new cultivars in the lack of labeled sam-
ples. On the other hand, sometimes it is difficult to label 
samples. Some cultivars’ phenotype changed dramati-
cally during their flower opening process [14], if labeled 
as the same cultivar will cause ambiguity, as shown in 
Fig.  1. These problems restrict the application of deep 
learning in plant phenotype.

Inspired by human rapid learning ability, a challenging 
machine learning field called Few-Shot Learning (FSL) 
emerges [16], which helps to relieve the burden of col-
lecting large-scale supervised data. The methods of FSL 
are being widely applied to various research areas such 
as computer vision, natural language processing, audio 
and speech, and data analysis, etc. [17]. Early research 
of FSL approaches focused on the image field, the solu-
tion of image recognition tasks by FSL is that the model 

can learn quickly for new classes after learning a large 
amount of data in a certain class. Siamese Nets [18] is 
the first work that brings deep neural networks into FSL 
tasks, which consists of twin CNNs that share the same 
weights. By accepting a pair of samples as inputs, outputs 
of twin CNNs at the top layer are combined in order to 
output a single pairwise similarity score. Li [19] proposed 
an end-to-end deep architecture, Covariance Metric Net-
works, used in generic few-shot image classification and 
fine-grained few-shot image classification. The method of 
metric learning has been widely used in the image field.

Metric learning belongs to FSL. Through a spatial map-
ping approach that can be learned, an embedding space 
is obtained, in which all samples are converted into 
embedding vectors. In embedding space, the distance 
distribution between samples is being modeled so that 
similar samples are closer, and vice versa. This approach 
is applied in many fields, such as image retrieval, face 
recognition, target tracking, etc. Consequently, met-
ric learning is suitable for the task of flower cultivars 
identification.

In this work, by using metric learning method, 
unknown chrysanthemum cultivars were identified. We 
trained a chrysanthemum cultivars identification system 
using DCNN which was to transform the image into the 
embedding space. A DCNN was trained as a classifica-
tion task where the network learned to classify a given 
chrysanthemum cultivars image to its correct identity 
label. But different from the usual classifier training, in 
addition to the classification loss, it also increases the 
distance loss. In the embedding space, the classification 
loss distinguishes different classes, while the distance loss 
makes similar samples closer. Through the learning of the 
embedding space, the finally obtained embedding vector 
has the ability to measure, and the vector can be used for 
unknown chrysanthemum cultivars identification. To our 
knowledge, different datasets have a built-in bias, which 
has a certain impact on the recognition results. Thus, we 

Fig. 1  Opening process of one large-flowered chrysanthemum. Figure is from [14], with permission from the rights holder
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evaluate the performance of the proposed methods on 
three datasets, a public dataset and two novel datasets 
constructed by us. The public dataset Oxford 102 Flow-
ers consists of 102 flower classes, the number of images 
in each class between 40 and 258. Peony dataset contains 
1255 images of 80 cultivars that were manually photo-
graphed in 2019. Chrysanthemum dataset contains 2520 
images of 126 cultivars that were acquired by an auto-
matic image acquisition device in 2018. The ROC curve, 
Top-1, and Top-5 evaluation indicators are used to evalu-
ate the model, and the feature distribution of cultivars is 
visualized by T-SNE.

Methods
Chrysanthemum dataset
The image datasets of this research come from tradi-
tional Chinese large-flowered chrysanthemum culti-
vated by the research team of Beijing Forestry University 
(Beijing, China) in Dadongliu Nursery, Beijing. Cultivar 
naming standard is referred to Chinese Chrysanthemum 
Book [20]. The cultivation in our experiment belongs to 
single-flower cultivation, and the morphologies in these 
cultivars are similar. The cultivation process follows [14]. 
All images from chrysanthemum dataset were collected 
using the chrysanthemum image acquisition device. And 
the device and image acquisition process are the same as 
[14]. All the collected pictures were accurately and uni-
formly marked by the researchers using labelImg v1.7.0 
software.

Images of 126 cultivars were gathered by automatic 
image acquisition device in 2018, 100 cultivars were 
randomly selected for training and 26 cultivars for test. 

In order to balance the samples, we randomly selected 
20 images for each cultivar. The angles of the obtained 
images were consistent with the background, and some 
of the images were shown in Fig. 2.

According to [14], DCNN model paid substantial atten-
tion to inflorescence edge areas and disc floret areas, 
which were the key recognition positions. Therefore, 
DCNN models usually focus on the local information of 
the image when using deep learning to classify chrysan-
themum images. SimCLR [23] has shown that focusing 
on the part of the image can obtain better recognition 
results than focusing on the overall image because the 
overall information of the image is more demanding 
than the local information. Therefore, to make the model 
focuses on local information by learning the embed-
ding vector representation of a patch of an image, all the 
patches of the same image have similar representations, 
and different images have different representations. By 
random cropping, we expanded the number of original 
images by 10 times to a total of 25200 to construct the 
chrysanthemum dataset. Some of the images were shown 
in Fig. 3.

Peony dataset
Peonies were cultivated in a natural environment, the 
images were captured by the researchers with a digital 
camera under natural light in 2019. There are 80 culti-
vars of peonies, each of which contains 3-40 images, for a 
total of 1255 images. Due to the nonuniform background 
and the different shooting angles of these images, manual 
shooting is more subjective and flexible than shooting by 
a machine. Besides, there may be multiple peonies in one 

Fig. 2  Sample images in chrysanthemum dataset
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picture. Since the task of flower cultivars identification 
requires a complete top-view of images, and each image 
contains only one cultivar, the original images need to be 
annotated and cropped. We stored the cropped images 
by cultivars, checked each image manually, and screened 
out the images with overexposure, incomplete patterns, 
and poor definition to meet the requirements of the 
identification task. By random cropping, we expanded 
the number of original images by 10 times to a total of 
12550. We selected 20 images for each cultivar from the 
augmented images randomly, removed cultivars with less 
than 20 images, and finally constructed a balanced data-
set containing 11200 images of 56 cultivars. Some of the 
images were shown in Fig. 4. 80% of the images were used 
for training and 20% for test.

Oxford 102 flowers dataset
Oxford 102 Flowers dataset (Fig. 5) is a flower collection 
dataset released by the Department of Engineering Sci-
ence of Oxford University in 2008 [24]. It is mainly used 
for image classification, consisting of 102 different classes 
of flowers common to the UK, each class contains 40 
to 258 images. Since the flower cultivars identification 

task requires a complete top view of the flower, we first 
selected 3384 images of 80 classes of the original Oxford 
102 Flowers dataset. By random cropping, we expanded 
the number of original images by 10 times and then 
randomly select 20 images for each class from the aug-
mented images, remove classes with less than 20 images, 
and finally construct a balanced dataset containing 15400 
images of 77 classes. Likewise, 80% of the images were 
used for training and 20% for test. Table  1 shows the 
details of the three datasets.

Devices
The models were built and trained on the Ubuntu 
16.04 system, based on Intel Xeon Gold 5120 CPU and 
4 NVIDIA Titan Xp 16GB GPU hardware platform. 
PyTorch was used for our experiments.

Metric learning method
Refer to the method of [22], we first summarize the gen-
eral pipeline for training a chrysanthemum cultivars 
identification system using DCNN as shown in Fig.  6. 
The DCNN includes a feature extractor and classifier. 
During training, the DCNN is trained where the network 

Fig. 3  Sample images in chrysanthemum dataset after random cropping
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Fig. 4  Sample images in peony dataset

Fig. 5  Sample images in Oxford 102 Flowers dataset

Table 1  Details of three datasets

Dataset Original dataset Augmented dataset

No. of classes No. of images No. of classes No. of images

Chrysanthemum dataset 126 2520 126 25200

Peony dataset 80 1255 56 11200

Oxford 102 Flowers dataset 102 8189 77 15400
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learns to classify a given chrysanthemum cultivars image 
patch to its correct identity label, a softmax loss function 
is used for training the network which is given by Eq. (1)

where M is the training batch size, xi is the ith input chry-
santhemum cultivars image patch in the batch, feature 
descriptor f (xi) is the corresponding output of the fea-
ture extractor, yi is the corresponding class label, and W 
and b are the weights and bias for the last layer of the net-
work which acts as a classifier. Feature descriptor f (xi) is 
also the embedding vector using the L2-norm.

At test time, the embedding vectors f (xg ) and f (xp) 
are extracted for the pair of test chrysanthemum cultivars 
images xg and xp respectively using the trained DCNN, 

(1)LS = −
1

M

M∑

i=1

log
e
WT

yi
f (xi)+byi

∑C
j=1 e

WT
j f (xi)+bj

and normalized to unit length. Then, a similarity score s 
is computed as the L2-distance or using cosine similar-
ity, as given by Eq. (2). Due to normalized, the two results 
are equivalent. If the similarity score is greater than a set 
threshold, the chrysanthemum cultivars pairs are decided 
to be of the same cultivars.

To ensure that samples of the same cultivars are as 
close as possible during training, center loss [21] was 
proposed to enhance the discrimination of the deep fea-
tures trained by DCNN, which can simultaneously learn 
a center for deep features of each class and minimize 
the distances between the deep features and their cor-
responding class centers. Center loss can efficiently pull 

(2)s =
f (xg )

T f (xp)

� f (xg )�2 � f (xp)�2

Fig. 6  The general pipeline for training a chrysanthemum cultivars identification system using DCNN
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the deep features of the same class to their centers to 
improve the similarity. In this paper, the total loss func-
tion includes center loss and L2-softmax loss [22], which 
can increase the distance between different samples while 
reducing the distance inside the same samples so that the 
learned features have better generalization and discrimi-
nation ability to improve the feature recognition ability of 
DCNN. The total loss function is defined as 

 and LS is L2-softmax loss, LC is center loss, � is a scalar to 
balance the two loss functions, cyi ∈ R

d denotes the yi th 
class embedding center vector in embedding space.

A L2-softmax loss function [20] is given by Eq. (5)

 where xi denotes the input image, yi denotes the corre-
sponding class label, f (xi) denotes the feature descrip-
tor which is restricted by a constant value α . W and b are 
the weights and bias for the last layer of the network, the 
size of mini-batch and the number of classes is M and C, 
respectively. Fig. 7 shows the architecture of the network.

(3)L = LS + �LC

(4)LC =
1

2

m∑

i=1

� xi − cyi �
2
2

(5)
Minimize −

1

M

M∑

i=1

log
e
WT

yi
f (xi)+byi

∑C
j=1 e

WT
j f (xi)+bj

Subject to � f (xi)�2 = α,∀i = 1, 2, ...,M,

Implementation details
According to [25], ImageNet-trained CNNs are strongly 
biased towards recognizing textures. But for ornamen-
tal plants, color is a very important factor that must be 
considered. Thus, we used the script of ResNet18 [26] 
as a feature extractor to learn 128-D embedding instead 
of using pre-trained on ImageNet [27] dataset for 
our experiments. Besides, the script of ResNet50 and 
DenseNet121 were used for comparative experiments 
on chrysanthemum dataset.

Our model requires the fixed-size (224×224 pixel) 
input images, so the original images were first scaled 
to 256×256 pixels, and then images of 224×224 pix-
els were randomly cropped from the scaled images to 
obtain different scales and local feature images.

For chrysanthemum dataset, due to the use of the 
center loss, we adopt P-K sampling strategy [28] to 
construct mini-batch in training. The core idea is to 
form mini-batch by randomly sampling P classes (chry-
santhemum cultivars), and then randomly sampling K 
images of each class (cultivar), thus resulting in a mini-
batch of PK images. The DCNN was initialized by He 
initialization [29]. The test set consists of 26 cultivars 
that are different from the training set, with a total of 
5200 sample pairs, 2600 pairs of positive samples, and 
2600 pairs of negative samples. All positive and nega-
tive pairs were sampled randomly and performed to 
binary decision and 10 cross-validation. For peony 
dataset and Oxford 102 Flowers dataset, in terms of 
dataset division, we performed a random shuffling of 
the images in the datasets mentioned above, 80% of 

Fig. 7  The network architecture. FC represents the fully connected layer
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images were used for training and the rest for test. Oth-
ers are the same as chrysanthemum.

The model supervised by L2-softmax loss and center 
loss trained 30 epochs in total. Using ResNet18, the 
training time of chrysanthemum dataset and the Oxford 
102 Flowers dataset was around 3 hours and was 
around 2 hours for peony dataset. Using ResNet50 and 
DenseNet121, the training time of chrysanthemum data-
set was around 3 hours and 4 hours, respectively. The 
Adam optimizer was used to optimize the network with 
the initial learning rate of 0.001, and the step-decay strat-
egy was adopted for the learning rate adjustment. We fix 
the hyperparameter � to 1 and α to 10 in this experiment.

Evaluation
We used Top-k accuracy, which has been widely used to 
evaluate the DCNN model in image classification, as the 
evaluation criteria to evaluate our model. The network 
gives the most likely k classification results, the classifi-
cation is considered correct if the k results include the 
correct class. Therefore, we applied the Top-k accuracy 
to our model and used the average of all images in the 
test set of each cultivar as the Top-1 and Top-5 accuracy. 
In addition, we used the receiver operating characteristic 
(ROC) curve which is commonly used to analyze results 
for binary decision problems and the area under the ROC 
curve (AUC) as the evaluation metrics.

T-Distributed Stochastic Neighbor Embedding 
(T-SNE) is a technique for dimensionality reduction that 
is particularly well suited for the visualization of high-
dimensional datasets [30]. T-SNE is a nonlinear dimen-
sionality reduction algorithm, which is very suitable for 
dimensionality reduction of high-dimensional data to 
two or three dimensions for visualization. For points 
with greater similarity, the distance of t distribution in 
the low-dimensional space needs to be smaller; for points 
with low similarity, the distance of t distribution in the 
low-dimensional space needs to be farther. This just sat-
isfies our need for features in the same cluster (closer 
distance) to gather closer, and features between differ-
ent clusters (farther distance) to be more distant. For the 
above methods, we extracted high-dimensional features 
of the training set and test set images respectively and 
visualized them in a two-dimensional space.

Results
Model accuracy performance on chrysanthemum dataset
For joint supervision of center loss and L2-softmax 
loss on chrysanthemum dataset, two P-K sampling 
schemes were designed. For each batch of training, 
one scheme includes P=5, K=10, and a total of 50 
images; the other includes P=18, K= 5 images, and 
a total of 90 images. Table  2 lists the Top-1 accuracy 

(%) of chrysanthemum test set obtained with the two 
schemes for different network architecture. ResNet18 
with P=18, K=5 achieves the highest performance by 
the accuracy of 91.88%.

The ROC curve on chrysanthemum test set
The ROC curve of the five models joint supervision of 
center loss and L2-softmax loss after 10 cross-validations 
on chrysanthemum test dataset are shown in Fig. 8.

T‑SNE visualization on chrysanthemum dataset
To directly observe the distribution of features extracted 
by the model about different cultivar images, we applied 
T-SNE nonlinear dimensionality reduction algorithm. 
The dimension-reduced scatter plot (Fig.  9) shows the 
distribution of features extracted from images on chry-
santhemum dataset. Fig. 9a depicts the 2-dimension fea-
tures reduced from 128-dimension in the training set. 
We can see from this figure that most of the images are 
mapped on their own fixed areas, images of chrysanthe-
mums from the same cultivar are grouped together, dif-
ferent cultivars are separated, but there is overlap in a 
small area. By observing the feature distribution map 
along with example images of each cultivar in Fig. 10, we 
find that the chrysanthemum in the overlapping area has 
the same color and similar morphology. This phenom-
enon also appears in the test set as shown in Figs. 9b and 
11.

Results on peony dataset and Oxford 102 flowers dataset
Top-1 and Top-5 accuracy rates are used to evaluate 
the model trained with only L2-softmax loss (Model S) 
and joint supervision of center loss and L2-softmax loss 
(Model C) on peony dataset and Oxford 102 Flowers 
dataset. Both models include P=18, K= 5 images, and a 
total of 90 images. Table 3 shows the accuracies of peony 
dataset. With and without center loss, the model both 
achieved high recognition accuracy rates. Top-1 accu-
racy rates of the model are 93.97% and 97.99%, respec-
tively, and Top-5 accuracy rates of the model are 99.82% 
and 99.73%, respectively. In Table 4, Top-1 accuracy rates 
of Oxford 102 Flowers dataset with and without center 

Table 2  Top-1 accuracy (%) of chrysanthemum test set

Model Acc.

ResNet18 (P=5, K=10) 89.50

ResNet18 (P=18, K=5) 91.88

ResNet50 (P=5, K=10) 66.21

ResNet50 (P=18, K=5) 90.54

DenseNet121 (P=5, K=10) 89.33
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loss are 86.13% and 95.36%, respectively, and Top-5 accu-
racy rates are 97.34% and 99.42%, respectively, which are 
slightly lower compared to peony dataset.

To analyze the distribution of features, we drew the 
boxplots to reflect the distance within and between 
classes. The distance boxplots are shown in Fig. 12a, b are 

Fig. 8  ROC curve of chrysanthemum test set. a ResNet18 (P=5, K=10). b ResNet18 (P=18, K=5). c ResNet50 (P=5, K=10). d ResNet50 (P=18, K=5). 
e DenseNet121 (P=5, K=10)
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Fig. 9  Dimension-reduced scatter plot of ResNet18 (P=18, K=5) on chrysanthemum dataset. a The feature distribution of the training set, × 
represents the center of each cultivar. b The feature distribution of the test set

Fig. 10  The feature distribution of some example images of each cultivar in the training set. × represents the center of each cultivar
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the boxplots of the Oxford 102 Flowers dataset, Fig. 12c, 
d are of peony dataset. Among them, Fig. 12a, c only use 
L2-softmax loss, Fig.  12b, d joint supervision of center 

loss and L2-softmax loss. The boxplot on the left of each 
figure represents the distance within the class, and the 
boxplot on the right represents the distance between 
classes. The upper and lower lines in the boxplot rep-
resent the maximum and minimum values of the data, 
respectively. The upper and lower boundaries of the rec-
tangular box represent the upper and lower quartiles of 
the data, respectively, and the middle line represents the 
median of the data. Compared with the model that only 
uses L2-softmax loss, the model that adds center loss can 
reduce intra-class distance significantly.

Discussion
Deep learning and other related technologies have been 
applied to the research of flower classification tasks and 
made a series of important progress [10–13]. Although 
these methods achieved high recognition accuracy, 
the image features obtained through the classification 

Fig. 11  The feature distribution of some example images of each cultivar in the test set

Table 3  Top-K rates (%) of peony dataset

Model Top-1 acc. Top-5 acc.

Model S 97.99 99.73

Model C 93.97 99.82

Table 4  Top-K rates (%) of Oxford 102 Flowers dataset

Model Top-1 acc. Top-5 acc.

Model S 95.36 99.42

Model C 86.13 97.34
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network do not reflect the botanical features of flow-
ers, which cannot provide further help for botany 
research. Compared to only identifying plant species 
from flower images [10], flower cultivars identification 
based on metric learning can not only classify flower 
cultivars accurately, but more importantly make the 
model has the ability to metric and make the classifica-
tion results interpretable. In this study, we proposed a 
method based on metric learning by adding center loss 
to the classification network for flower cultivars identi-
fication. Three different and representative datasets are 
chosen to evaluate our proposed method and validated 
the effectiveness.

The model trained in combination with center loss and 
L2-softmax loss on chrysanthemum dataset, for adopting 
P-K sampling strategy to construct mini-batch in train-
ing, the accuracy of the model using P=18, K=5 scheme 
is higher than that of using P=5, K=10. This shows that 
the more classes are included in each batch, the training 
will be faster and the test accuracy will improve. Top-1 
accuracies of different feature extraction networks show 
that the accuracy rates do not blindly increase as the 
number of network layers deepens. Due to the small 
amount of data in this research, there may be overfit-
ting problems on networks with deeper layers. Therefore, 
ResNet18 has the highest Top-1 accuracy under the same 
P and K values among the three different network archi-
tectures. For peony dataset and Oxford 102 Flowers data-
set, we found that the model joint supervision of center 
loss and L2-softmax loss has a slightly lower accuracy 
compared to only using L2-softmax loss, but the feature 
of the same class gathers more closely. Unlike the image 
angles of peony dataset, which are mostly top-view and 
oblique-view, Oxford 102 Flowers dataset has a variety 
of image angles, so the selection of its feature center is 
slightly difficult, resulting the clustering within the class 
is not as obvious as peony dataset. Different from face 
recognition, the backgrounds of the images in peony 
dataset and Oxford 102 Flowers dataset are not uniform, 
so the optimization effect will be weakened.

DCNN model is difficult to interpret, visualizing the 
outputs helps us to understand its training results [31]. 
The visualization results show that after training, image 
patches from the same cultivar are gathered on the 
feature center representing the cultivar, achieving the 
purpose of establishing cultivar features through local 
information. In addition, we found that the chrysan-
themums in the overlapping area have the same color 
and similar morphology, while the color and morphol-
ogy information was not provided during the training, 
which shows that the network has indeed learned the 
potential botany information from the image. Especially 
in the test set, although the chrysanthemum cultivars in 
the test set did not appear in the training set, the model 
can still distinguish the unseen cultivars when the test 
set is applied to the model, indicating that the features 
learned by the model have good discrimination ability, 
as compared to results reported in [14]. The model has 
achieved high generalization, which proves the effec-
tiveness of metric learning. Center loss only focuses on 
reducing intra-class distance and does not deal with the 
inter-class distance, which leads to overlaps between 
different classes. Since each mini-batch updates the 
center once during the training process which will 
make the center unstable, it needs to be combined with 
the L2-softmax loss to maintain stability. Center loss is 

Fig. 12  The distance boxplot. Note: a The distance boxplot of the 
Oxford 102 Flowers dataset of Model S. b The distance boxplot of 
the Oxford 102 Flowers dataset of Model C. c The distance boxplot of 
peony dataset of Model S. d The distance boxplot of peony dataset 
of Model C
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mostly used for face recognition in previous research 
[21], so how to solve the overlap problem between 
samples of different cultivars to make it more suitable 
for flower cultivars identification and make the model 
more universal are the direction of our future research.

Conclusions
In this paper, we developed a metric learning method 
based on DCNN for flower cultivars identification 
tasks. The results have shown the effectiveness of the 
proposed method with high recognition rates and the 
feature extracted from the recognition network is inter-
pretable. The same class gathers more closely and has 
a strong aggregation, and the distance between differ-
ent classes increases, showing stronger separation. This 
study can provide new ideas for the application of a 
small amount of data in the field of identification, and 
has important reference significance for the flower cul-
tivars identification research.
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