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Abstract 

Background:  Accurate and efficient measurement of the diameter at breast height (DBH) of individual trees is 
essential for forest inventories, ecological management, and carbon budget estimation. However, traditional diameter 
tapes are still the most widely used dendrometers in forest surveys, which makes DBH measurement time-consuming 
and labor-intensive. Automatic and easy-to-use devices for measuring DBH are highly anticipated in forest surveys. In 
this study, we present a handheld device for measuring the DBH of individual trees that uses digital cameras and laser 
ranging, allowing for an instant, automated, and contactless measurement of DBH.

Results:  The base hardware of this device is a digital camera and a laser rangefinder, which are used to take a picture 
of the targeted tree trunk and record the horizontal distance between the digital camera and the targeted tree, 
respectively. The core software is composed of lightweight convolutional neural networks (CNNs), which includes an 
attention-focused mechanism for detecting the tree trunk to log the number of pixels between the edges. We also 
calibrated the digital camera to correct the distortion introduced by the lens system, and obtained the normalized 
focal length. Parameters including the horizontal distance between the digital camera and the targeted tree, number 
of pixels between the edges of the tree trunk, and normalized focal length were used to calculate the DBH based on 
the principles of geometrical optics. The measured diameter values, and the longitudes and latitudes of the measure-
ment sites, were recorded in a text file, which is convenient to export to external flash disks. The field measurement 
accuracy test showed that the BIAS of the newly developed device was − 1.78 mm, and no significant differences 
were found between the measured diameter values and the true values (measured by the conventional tape). Fur-
thermore, compared with most other image-based instruments, our device showed higher measurement accuracy.

Conclusions:  The newly developed handheld device realized efficient, accurate, instant, and non-contact meas-
urements of DBH, and the CNNs were proven to be successful in the detection of the tree trunk in our research. We 
believe that the newly developed device can fulfill the precision requirement in forest surveys, and that the applica-
tion of this device can improve the efficiency of DBH measurements in forest surveys.

Keywords:  Forest inventory, Tree measurement, Digital camera, Convolutional neural networks, Spatial attention 
module
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Background
Forest inventory is an important approach for deter-
mining the quantity, quality, and distribution of forest 
resources [1]. In a forest survey, the diameter at breast 
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height (DBH) of individual trees is one of the most 
important indicators of tree attributes [2]. Accurate 
measurement of DBH is essential for forest resource 
inventory and management, tree growth, and carbon 
cycle modeling [1, 3]. Currently, acquiring the DBH of 
individual trees using traditional tapes is a time-con-
suming and labor-intensive endeavor. Devices which can 
obtain DBH in a rapid and accurate manner are highly 
anticipated [4].

Methods for measuring DBH can be divided into two 
categories: contact and non-contact. Contact dendrom-
eters need to physically touch the tree trunk. Conven-
tional calipers and diameter tapes are the most widely 
used contact dendrometers in forest surveys. Usually, 
two people are required to perform the DBH measure-
ment (one for measuring, the other for recording). The 
limitations of contact dendrometers are their low effi-
ciency and high labor cost. Non-contact dendrometers, 
such as optical calipers [5], rangefinder dendrometers [6], 
and optical forks [7], have been designed based on the 
principle of optical measurement. They do not need to 
touch the tree trunk; instead, perspective geometry uti-
lizes various angles and distances to calculate the trunk 
diameter [8]. Photographs taken using a conventional 
film camera have also been used to perform non-contact 
DBH measurements. However, additional tools, such as 
reference stick with a known length or control points, 
must be placed near the tree trunk as a reference scale in 
order to determine how distances on the image relate to 
those in the real world, before the DBH of the tree trunk 
can be calculated [9, 10]. Moreover, lens distortions and 
film non-flatness from cameras can decrease the accu-
racy of the DBH measurements [11].

With the development of digital imaging technology, 
digital cameras have been used to measure the DBH of 
individual trees. These methods commonly require aux-
iliary tools such as reference sticks and calibration poles, 
and the contours of tree trunks are usually extracted 
manually, or through color-based approaches. For exam-
ple, Clark [4] developed an instrument to measure DBH 
that incorporated a digital camera, a 3-axis magnetom-
eter, and a laser rangefinder. The photo of the tree, range, 
and orientation data were fed into the “Tree Measure-
ment System” processing program to calculate param-
eters such as DBH, height, and stem volume. However, 
manual input was still required to extract the contour 
of the tree trunk. Juujärvi et al. and Varjo et al. [12, 13] 
developed an image-based tree measurement system, 
which consisted of a digital camera, a laser rangefinder, 
and a calibration stick. Color and stem form models 
were combined to create a histogram separation model 
to locate the trunk curves and automatically extract the 
trunk frame. Camera geometry parameters and viewing 

geometry must first be determined before the color image 
information can be transformed into a three-dimensional 
trunk model of the tree and yield the measurements of 
tree height and DBH. Brownlie et al. [11] designed a pho-
togrammetric image-based dendrometry system called 
“TreeD” for measuring the features of individual standing 
trees. Additional tools such as a transponder and height 
pole are needed for the “TreeD” system. Field param-
eters, including the horizontal distance from the camera 
to the tree and the height of the transponder above the 
ground, must be measured in the field. These parameters 
are used to register the tree images in a three-dimen-
sional space using complex triangular-geometry calcula-
tions and coordinate transformations. Parameters such 
as DBH, height, and crown size, can then be measured 
in the “TreeD” system using stereogram-displaying soft-
ware. Gazda and Kedra [14] developed a tree architecture 
description method using an image photogrammetric 
method, which includes image transformation (turn-
ing a non-metric into a metric image), calibration with 
a reference object, and vectorization. In recent years, 
smartphone-based passive monocular vision measure-
ment methods have also been used to measure the DBH. 
For example, Wu et al. [3] proposed a method for meas-
uring the DBH of multiple trees based on a single image 
taken by a smartphone camera, using machine vision and 
close-range photogrammetry technology. According to 
Wu et  al., a visual segmentation approach based on an 
improved frequency-tuned saliency algorithm was used 
to extract the trunk contour using the color features. An 
adaptive feature coordinate system and the color infor-
mation of the tree trunk were used to measure DBH.

Several studies have attempted to utilize multiple 
images taken from different directions to generate point-
cloud data to measure the DBH of individual trees at the 
plot level. For example, Liang et al. [15] collected several 
photos taken at different positions around a forest plot 
using an uncalibrated digital camera. These photographs 
were used to generate point-cloud data by utilizing the 
automated image matching process of the Agisoft Photo-
Scan professional commercial software. The point-cloud 
data in the camera space was then transformed to obtain 
3-Dimensional (3D) point-cloud data in the real-word 
space, which was then used to measure the DBH of each 
individual tree in the plot. Mulverhill et al. [16] also used 
the Agisoft PhotoScan software to construct accurate 
photogrammetric point-cloud data, and derived DBH, 
height, taper, and volume of trees in a plot. Forsman 
et al. [17] utilized a prototype multi-camera rig to record 
images from the center of field plots in multiple direc-
tions. Images were then used to generate point-cloud 
data to estimate tree attributes. Fan et  al. [18] used a 
smartphone with a Google Tango sensor (the smartphone 
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contained a combination of an RGB (red, green, blue) 
camera, a time-of-flight camera, and a motion-tracking 
camera called a vision sensor) to record images of trees, 
and they designed an algorithm to estimate the DBH and 
the location of the trees in the plot, using the point-cloud 
data generated from the time-of-flight camera and cam-
era pose. The advantages of image-based point-cloud 
data include the low price of the equipment and the sim-
plicity of the field measurements, and the disadvantages 
include the difficulties of mapping small trees and trees 
that are occluded by the complex forest stands, and the 
time required for data processing [15].

In past few years, with the development of light detec-
tion and ranging (LiDAR) technology, more and more 
research has utilized ground-based or unmanned LiDAR 
scanning to obtain 3D point-cloud data of trees, and to 
derive height and DBH measurements [19–23]. The 
advantage of LiDAR technology is that it can describe the 
3D structure of trees and obtain multiple tree parameters 
(such as height, DBH, and crown size) at the plot level. 
However, LiDAR equipment is expensive, its operation in 
the field is complicated, and data processing is very com-
plex and specialized. At present, it is still difficult to uti-
lize LiDAR technology widely in forestry surveys [21].

Based on the above discussion, we can see that refer-
ence sticks, calibration poles, and auxiliary indicators 
such as angles and distances are needed in the early 
image-based measurements of DBH. Manual processing 
is required to extract the trunk contour. This leads to a 
low degree of automation in measuring DBH. Further-
more, the calculation stage for many prior instruments 
needed to be conducted on a computer [4, 11–13], which 
led to low working efficiency in field forest surveys. Pres-
ently, smartphone-based machine vision and close-range 
photogrammetry technology have improved the degree 
of automation in image-based DBH measurements. Ref-
erence sticks and calibration poles are rarely used in 
field measurements. However, conversions between dif-
ferent coordinate systems (e.g., image plane coordinate 
systems, image space coordinate systems, photogram-
metric coordinate systems, and object space coordinate 
systems) are quite complicated. Furthermore, the accu-
racy of the three-dimensional coordinates derived from 
two-dimensional image coordinates cannot be guaran-
teed [24], which decreases the accuracy of DBH meas-
urements. It is worth mentioning that trunk contour 
extraction is a vital step for measuring DBH. However, 
in current research, most algorithms (such as histogram 
comparisons) of trunk contour extraction is based on the 
color information of the trunk, which is prone to error in 
the identification of tree trunks. In addition, instruments 
developed in previous works were mostly a loose collec-
tion of different hardware (e.g., a digital camera, a laser 

rangefinder, a transponder, a tripod, and a calibration 
pole), and no highly integrated and handheld device has 
been developed for easy and convenient DBH measure-
ments. A compact design and user-friendly device could 
bring image-based DBH measurements to a wider range 
of users. Therefore, in this research, we attempted to 
develop a handheld, highly integrated DBH measurement 
device based on image recognition and laser ranging. 
We employed convolutional neural networks (CNNs) to 
identify the tree trunks using color and texture informa-
tion. The newly developed device can record the longi-
tudes and latitudes of the measurement sites in a text file 
format together with the measured DBH values and store 
this along with the tree images in the memory card. We 
believe that our device can improve the accuracy and effi-
ciency of DBH measurements in forest resource surveys.

Materials and methods
General introduction
The proposed device uses laser ranging and image recog-
nition, and has been developed to perform non-contact 
DBH measurements. The measured DBH values and 
the latitudes and longitudes of measurement sites were 
recorded and written into a text file, which can be easily 
transferred to an external flash disk.

The core software used is the object detection algo-
rithm, which utilizes CNNs to precisely detect tree 
trunks. The core hardware includes a digital camera, a 
laser rangefinder, an embedded development board, a 
global positioning system (GPS), battery, liquid crys-
tal display (LCD), and a memory module (Fig.  1). 
The size of the device is 10.5  cm × 5.5  cm × 14.5  cm 
(length × width × height), and the weight is 600 g, which 
is light enough to be carried by a single person operating 
in the field without the support of a tripod. This device 
can work continuously for about 12 h in an environment 
with a temperature range of 0–40  °C, which meets the 
requirements of field forest surveys.

When the device is powered on, the microprocessor 
continuously reads the low-resolution video through the 
interface of the digital camera, and a real-time video is 
displayed on the LCD. When the operator issues the 
“Take photo” command to the digital camera by pressing 
a virtual button on the LCD, the digital camera captures 
a high-resolution photo of the targeted tree trunk. The 
photo is then processed by the microprocessor to iden-
tify and extract the trunk using CNNs algorithm. Then, 
the number of pixels between the edges of the extracted 
trunk contour is recorded. Meanwhile, the laser range-
finder measures the horizontal distance between the digi-
tal camera and the targeted tree trunk. This information 
is sent to the microprocessor to calculate the DBH based 
on the theory of geometrical optics. The DBH value is 
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then displayed on the LCD and written into a text file 
together with the recorded latitude and longitude. The 
workflow of the device is shown in Fig. 2.

Theoretical basis
The theoretical basis of the proposed device is shown in 
Fig. 3. The DBH is measured based on the horizontal dis-
tance from the device to the targeted tree trunk, intrinsic 
camera parameters (focal length, pixel size), and number 
of pixels between the edges of the trunk at breast height. 
In Fig.  3, L is the projection of the semidiameter of the 
trunk on the charge-coupled device (CCD) plate of the 
digital camera, f  is the focal length, D is the horizontal 
distance from the camera to the targeted tree trunk, and 
R is the semidiameter of the tree trunk.

In the theory of geometrical optics, the relationships 
between L , f , and D are expressed by Eq.  (1). Based on 
the imaging principle of a digital camera, L can be calcu-
lated using Eq. (2).

(1)
L

f
=

R

R+ D
,

(2)L =
1

2
(N × µ).

In Eq.  (2), N  is the number of pixels between the 
edges of the tree trunk at breast height. µ is the pixel 
size. We can use Eq.  (3) to calculate R based on the 
combination of Eqs. (1) and (2).

fx is the normalized focal length of the abscissa axis, 
which is calculated using Eq.  (4). Based on Eqs.  (3) and 
(4), we can use Eq. (5) to calculate R.

fx is one of the intrinsic camera parameters. Although the 
manufacturer has provided intrinsic parameters such as 
pixel size and focal length, we need to calibrate the cam-
era to determine the precise intrinsic camera parameters. 
In this research, we used the method described by Zhang 
[25] to calibrate the camera and obtain the normalized 
focal length ( fx ). N  is the number of pixels between the 
edges of the extracted tree trunk at breast height.

(3)R =
DNµ

2f − Nµ
.

(4)fx = f /µ,

(5)R =
DN

2 fx −N
,

Fig. 1  Structure of the device. LCD liquid crystal display, USB universal serial bus
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Detection of the tree trunk
Detecting the tree trunk is a demanding task because of 
the variations in texture and color richness of the tree 
trunk, occlusions of forest scene objects, complex back-
grounds, and diverse lighting conditions. The emergence 
of CNNs provides a good solution for object detection 
[26]. It can automatically acquire features from the train-
ing data that represent the nature of the target. Compared 
with manually selected features, deep features selected by 

CNNs have a robust ability to describe the characteristics 
of targeted objects [27]. Several researchers have utilized 
CNNs to detect objects in image interpretation [28–32]. 
In the present study, we adopted a lightweight algorithm 
based on CNNs that includes an attention-focused mech-
anism for detecting the tree trunk.

Fig. 2  Workflow of the presented device. CNNs convolutional neural networks, LCD liquid crystal display, GPS global positioning system
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Dataset construction
CNNs are data-driven deep-learning algorithms that 
require sample data to train the model for object detec-
tion. We collected 200 pictures of trees, including those 
of Cerasus serrulata, Amygdalus persica, Pinus tabu-
liformis, Ailanthus altissima, and Fraxinus chinensis. 
We extracted sub-images of the tree trunks from these 
pictures manually, and used half of them as the training 

data, while the remaining images were used as the test 
data.

Construction of the CNNs
A large receptive field is the key to the effective extrac-
tion of semantic edges, and the size of the receptive field 
increases with increasing convolutional layers. The size of 
the receptive field is calculated using Eq. (6):

Fig. 3  Working principle of the device
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In Eq.  (6), lk−1 is the size of the receptive field for the 
k − 1 convolutional layer, fk is the kernel or pool size of 
the k layer, and Si is the stride of the convolution or pool-
ing layer. The increase in the receptive field size can be 
achieved by either increasing the size of the kernel or the 
stride. However, increasing the size of the convolution 
kernel increases the computation load exponentially. It is 
difficult for an embedded device to accomplish this com-
puting process. Therefore, we chose to increase the size 
of the receptive field by increasing the stride size of the 
convolution. Increasing the stride size can also reduce 
the size of the feature map and effectively decrease the 
amount of computation.

Pool down-sampling and convolution down-sampling 
are two approaches that are commonly used to increase 
the stride size. As pool down-sampling is more condu-
cive to model convergence, we chose pool down-sam-
pling in the CNNs to increase the stride size. Although 
we reduced the computation load by pool down-sam-
pling, the computation overhead and memory overhead 
were still very large for an embedded device. Therefore, 
we took measures to further compress the CNNs. In 
our research, we utilized the same approach adopted by 
MobileNet [33] to compress the model, using separable 
convolution instead of standard convolution filters to 
process the information. Separable convolution was com-
posed of depth wise convolutions and 1 × 1 convolutions.

The number of parameters (Prams) and the cost of the 
standard convolution (Cost) can be obtained by Eqs.  (7) 
and (8) respectively.

In Eqs. (7) and (8), Dk is the size of the convolution ker-
nel, M is the number of input channels, N  is the number 
of output channels, and Df  is the size of the feature map.

The number of parameters and the cost of the separa-
ble convolution can be obtained separately using Eqs. (9) 
and (10).

In our study, Dk was set to 3. According to Hollemans 
[34], and having the same number of input and output 
channels is beneficial for increasing computational speed 
and reducing memory overhead. Therefore, M and N  

(6)lk = lk−1 +

[

(

fk − 1
)

×

k−1
∏

i=1

si

]

.

(7)Prams = Dk × Dk ×M × N ,

(8)Cost = Dk × Dk ×M × N × Df × Df .

(9)Prams = Dk × Dk ×M + 1× 1×M × N ,

(10)
Cost = Dk × Dk ×M × Df × Df +M × N × Df × Df .

were both set to 32 for down-sampling and up-sampling. 
Compared with the standard convolution, the number of 
parameters for separable convolution dropped from 9216 
to 1312.

Spatial attention module
Prior research has found that placing the targeted tree in 
the middle of the image can reduce image distortion and 
the influence of complex backgrounds on the extraction 
of the tree trunk, thereby increasing the measurement 
accuracy [3]. Therefore, we proposed that the device be 
placed such that the area to be used for the DBH meas-
urement was in the middle of the photo when meas-
uring. This allowed us to use the special features of a 
captured photo to filter out non-targeted trees and the 
background, further improving the accuracy of object 
detection. Based on this, we adopted the spatial attention 
module proposed by Woo et al. [35] to make the CNNs 
focus on processing the middle area of the photo, which 
utilizes both max-pooling and average-pooling opera-
tions along the channel axis to process the prior channel-
refined feature maps and concatenate them to generate 
an efficient feature descriptor. On the concatenated fea-
ture descriptor, a convolution layer and a sigmoid func-
tion were applied to generate a spatial attention map that 
determines areas to emphasize or suppress.

General architecture of CNNs
To meet the requirements for semantic edge detection, 
U-net utilizes convolution up-sampling to maintain the 
resolution of the output image, which is consistent with 
the input image [36]. Furthermore, U-net added “Concat-
enation” into the computation process, which connects 
prior feature maps with the semantic features, enabling 
valid features to be reused by the networks, thereby 
strengthening the learning ability of the networks.

In our research, we used a similar architecture to 
U-net, consisting of a contracting path and an expan-
sive path [36]. The contracting path is composed of the 
repeated application of 3 × 3 convolutions, followed by 
a rectified linear unit and a 2 × 2 max-pooling operation 
for down-sampling [36]. The number of feature channels 
was doubled at each down-sampling step. In the expan-
sive path, each step includes an up-sampling of the fea-
ture map, followed by an up-convolution that halves 
the number of feature channels [36]. A “Concatenation” 
operation was then used to connect with the correspond-
ing cropped feature map in the contracting path, along 
with two 3 × 3 convolutions, each followed by a rectified 
linear unit. Cropping was required to account for the loss 
of border pixels in each convolution [36]. Between the 
third convolution pool layer and the first convolution 
layer, we used a spatial attention module to optimize the 
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network outputs. In the final layer, we used a 1 × 1 con-
volution to map each feature vector to the desired object 
class. All the convolution layers were performed using 
separable convolution filters.

Hardware components
The key components and workflow of the proposed 
device are shown in Figs. 1 and 2, respectively. The major 
hardware includes an embedded development board, a 
laser rangefinder, digital camera, GPS, memory module, 
an LCD, and a battery.

Embedded development board
We selected Raspberry Pi 3B+ as the development board 
for our device. Raspberry Pi 3B+ possesses a 4-core A53 
series Advanced RISC Machines chip, which consumes 
less power and can reduce the need for a larger battery 
capacity, thus reducing the size and weight of the device. 
Furthermore, the Raspberry Pi series has a complete 
application ecosystem that can fulfill the operating envi-
ronment required for computer vision and deep learning.

Laser rangefinder
Considering the required portability of the device and 
aiming to minimize the ranging error caused by shaking 
and trembling, it was necessary to choose a laser rang-
ing module with low power consumption, a small size, 
and a high measurement frequency. Here, we selected the 
VL53L1X module as the rangefinder. The measurement 
range of the VL53L1X module was 5–400  cm, and the 
measurement frequency was 50 Hz. Its power consump-
tion was 20 mW, and the relative measurement error was 
approximately 3%.

Digital camera
To fulfill the requirements for measurement accuracy, we 
chose Raspberry Pi Camera V2 to record images of tree 
trunks. The focal length of the lens of the camera was 
16 mm. The sensor had 8 million pixels, and the pixel size 
was 3.7 μm. The digital camera allowed the video stream 
data to be collected at 1080 progressive scanning (P)/30 
frames per second (FPS).

GPS
The selected GPS module possesses good compatibility 
with Raspberry Pi, which is characterized by its small size 
and low power consumption. The working current for the 
GPS module was only 20 mA, the sensitivity was − 165 
decibel relative to one milliwatt (dBm), and the data 
update rate was 1 Hz.

Memory module
For Raspberry Pi 3B+, the operating system was written 
onto the secure digital memory card (SD Card). We chose 
a SanDisk memory card with 32 GB of data storage space 
as the memory module. The data collected with one shot 
of the device included a JPG image and a text file for each 
measured tree. The JPG image data was about 20  KB, 
and the text file was approximately 1  KB. Theoretically, 
the device can store the measured data of more than one 
million trees. Two universal serial bus (USB) ports were 
used to allow connections to an external flash disk. The 
device identified and connected with an external disk and 
transferred the data to the disk when the virtual button 
“ReadData” on the LCD was pressed.

LCD
The Raspberry Pi 3B+ has a variety of ways to output 
the video, such as general purpose input/output (GPIO), 
USB, and high definition multimedia interface (HDMI). 
Considering the need to shoot the tree in real time, we 
selected an LCD with an HDMI interface, which has a 
resolution of 800 × 480 and a refresh rate of 30 FPS.

Battery
The capacity of the selected lithium battery was 
12,000  mA, and the voltage was 3.7  V. When the 
device was powered on, the idle current was approxi-
mately 850 mA, the working current was approximately 
1000 mA, the peak current was approximately 1200 mA, 
and the theoretical working time was approximately 12 h.

Graphical user interface (GUI) and operation guide
Take–save
Pressing the virtual button “Take” (Fig.  4) caused the 
device to take a photo of the targeted tree trunk, meas-
ure the horizontal distance between the camera and the 
targeted tree trunk, and calculate the DBH. Then, “Take” 
will change into “Save,” and pressing the “Save” button 
saves the measured DBH value. The recorded data was 
written into a text file and stored in the memory card.

Vertical mark line
Three vertical lines in the central area of the LCD were 
used to mark the optimal location of the targeted tree 
trunk in the recorded image (Fig.  4). According to the 
measurement accuracy test, the measurement error of 
DBH is smallest when the proportion of the targeted 
trunk on the image is 50–60% (Fig. 9). In the GUI design, 
when the targeted trunk is located between the right and 
left vertical mark lines, the proportion of the tree trunk 
on the image is approximately 50–60%. When taking 
DBH measurements, it is good practice to place the tree 
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trunk between the two vertical mark lines in order to 
obtain the best detection accuracy.

Transverse mark line
A transverse line located in the middle of the LCD was 
used to mark the position of the DBH measurements 
(Fig. 4).

Ranging point
The ranging point is the crossing point of the transverse 
and the central vertical mark lines. When taking DBH 
measurements in practice, the distance used to calcu-
late the DBH value is the measured horizontal distance 
between the laser rangefinder and the ranging point.

Edge point
Two red points show the edges detected by the CNNs at 
the measuring position (Fig. 4).

Refine and refine line
Pressing the “Refine” button will let the device enter into 
the “Refine mode.” The operator can redefine the trunk 
edges manually if obvious errors occur in the automated 
edge detection. In the “Refine mode,” you can press the 
screen with your finger to move the “Refine line” (two 
vertical blue lines used to mark and correct the detected 
trunk edges on the left and right) (Fig.  4). The “Refine 

line” will move with your finger until the “Refine line” 
reaches the edge of the tree trunk.

Cancel
If you press the “Cancel” button, the newly measured 
data and the photos taken by the device will not be stored 
in the memory card (Fig. 4).

Diameter display area
This area was used to show the measured value of DBH 
(Fig. 4).

Distance display area
The measured distance between the camera and the tar-
geted tree trunk in this area is shown in Fig. 4.

ReadData
When the device is connected to an external USB storage 
device, pressing “ReadData” will allow the measured data to 
be transferred to the external USB storage device. A folder 
named “data” will be created in the external USB storage 
device, which contains two sub-folders named “record” and 
“images,” respectively. The measured DBH values will be 
stored in the “record” folder, and the photos of tree trunk 
will be stored in the “images” folder. The format of the pho-
tographs was JPG. The measured DBH value, longitude, 
and latitude were written in a text file. Both the JPG file and 

Fig. 4  Graphical user interface of the presented device
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the text file were named using the imaging time (for exam-
ple, 2019-12-01-08-17-50.jpg and 2019-12-01-08-17-50.txt, 
where 2019 is the year, 12 is the month, 01 is the day, 08 is 
the hour, 17 is the minute, and 50 is the second).

Shut down
This button was used to power off the device safely, with 
the measured data safely stored in the memory card.

Evaluation of the accuracy of DBH measurement
Two methods were employed to evaluate the measurement 
accuracy of the proposed device. The first method utilized 
the known diameter values (50  mm, 100  mm, 150  mm, 
200 mm, 250 mm, and 300 mm) of six standard cylinders as 
a reference. For each standard cylinder, we first measured 
the diameter ten times at a distance of 2 m away from the 
standard cylinder, and then repeated the measurement at a 
distance of 2.5 m and 3 m using our device. Then, to deter-
mine the optimal viewing frame, we analyzed the relation-
ship between the absolute relative error (absRE) of DBH 
measurement and the percentage of the targeted trunk on 
the acquired image.

The second method used the diameter values measured 
using conventional diameter tape in the field as a reference 
to evaluate the measurement accuracy. The measurements 
were taken in a semi-natural (deciduous broad-leaved) for-
est park located in the suburban Mentougou district of Bei-
jing. Many trees in this park are natural, but there are also 
many trees that were planted 20–30 years ago. The test data 
were gathered during field measurements in December 
2019. The measurements were conducted from 14:00 to 
16:30, during a cloudless afternoon, with good, but not very 
strong, sunlight. In total, the DBH values of 121 trees (Koe-
lreuteria paniculata, Ailanthus altissima, Robinia pseudo-
acacia, and Fraxinus chinensis) were recorded using both 
the newly developed device and the conventional tape.

To evaluate the measurement accuracy, we first calcu-
lated the absRE of the diameter values measured by our 
device and analyzed the distribution of absRE. We also cal-
culated the average absolute relative error (aveRE), BIAS, 
root mean square error (RMSE), relative BIAS (relBIAS), 
and relative RMSE (relRMSE) to evaluate the measure-
ment accuracy. BIAS, RMSE, relative BIAS, relative RMSE, 
absRE, and aveRE are defined by the following equations:

absRE =
|xi − xir |

xir
× 100,

aveRE =

n
∑

i=1

(

|xi − xir |

xir
× 100

)/

n,

Here xi is the ith measurement, xir is the ith reference, 
and n is the number of estimations.

We then calculated the Pearson correlation coeffi-
cient between the reference values and the diameter val-
ues measured by our device using bivariate correlations 
(2-tailed), and compared the measured diameter values 
with the reference using an independent sample t-test 
to determine whether significant differences existed 
between them. We also conducted a linear regression 
analysis to test the relationship between the reference 
and diameter values measured by our device.

Results
Compared with the known diameter values of standard 
cylinders
We found that the absRE ranged from 0.1 to 5.8% (Fig. 5), 
with an average value of 1.76%, and a median value of 
1.5%. The absRE of 87% of the measurements was less 
than 3%.

Correlation analyse, independent sample t-test, and lin-
ear regression indicated that the measured diameter val-
ues were significantly correlated with the reference values 
(Table  1, Fig.  6), and no significant differences existed 
between the measured diameter values and the reference 
values (p > 0.01, Table 1).  

BIAS, relBIAS, RMSE, and relRMSE showed that the 
diameter values measured by the device were close to the 
reference values.

Comparison with the diameter values measured 
by the conventional tape
The absRE ranged from 0.0 to 9.77%  (Fig.  7), with an 
average value of 3.38%, and a median value of 2.7%. The 
absRE of 70% of measurements was less than 5%.

We found that the measured diameter values of the 
device were significantly correlated with the refer-
ence values (p < 0.01, Table 1, Fig. 8), and no significant 

BIAS =

∑n
i=1 (xi − xir)

n
,

relBIAS =

∑n
i=1

(

xi
xir

− 1

)

n
× 100,

RMSE =

√

∑n
i=1 (xi − xir)

2

n
,

relRMSE =

√

√

√

√

∑n
i=1

(

xi
xir

− 1

)2

n
× 100.
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differences were observed between the diameter val-
ues recorded by the device and the reference values 
(p > 0.01, Table 1).

BIAS, relBIAS, RMSE, and relRMSE showed that the 

measured diameter values were close to the reference 
values (Table 1).

Fig. 5  Distribution of absolute relative error (reference is the known 
diameter values of the standard cylinders)

Table 1  Measurement accuracy of the newly developed device

**Correlation is significant at the 0.01 level (2-tailed). (Diameter values of standard cylinders measured by the device: reference is the known diameter values of 
standard cylinders; diameter values of individual trees measured by the device: reference diameter being the values measured using conventional tape)

Diameter values of standard cylinders measured by 
the device

Diameter values of individual 
trees measured by the device

aveRE (%) 1.76 3.38

BIAS (mm) 0.064 − 1.78

relBIAS (%) 0.32 − 0.77

RMSE (mm) 3.07 6.36

relRMSE (%) 2.11 4.22

Pearson correlation coefficient 0.999** 0.991**

sig. of independent sample test 0.808 0.772

Fig. 6  Relationship between the diameter values measured by the 
presented device and the diameter values of the standard cylinders

Fig. 7  Distribution of absolute relative error (reference diameter 
being the values measured using conventional tape)

Fig. 8  Relationship between the diameter values measured by 
the presented device and the diameter values measured by the 
conventional tape
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Optimal viewing frame
We found that the absolute relative error reached its low-
est value when the targeted tree trunk occupied nearly 
50–60% of the image (Fig. 9). Based on this, we provided 
the optimal viewing frame using two virtual vertical lines 
on the LCD in the graphical user interface design (Fig. 4).

Discussion
Characteristics of the presented device
The device developed in our research offers high-level 
integration to save space, reduce weight, decrease 
power consumption, and increase battery life, making 
it a good choice as a battery-powered handheld device 
for efficient DBH measurement. Moreover, no addi-
tional tools, such as reference sticks and height poles 
are needed in the field measurements of DBH. Most 
other image-based instruments for DBH measurement 
are a loose collection of components; auxiliary tools 
such as tripods and height poles are needed to imple-
ment the measuring process [11]. Furthermore, the 
measured DBH value is presented on the LCD instantly, 
and no further data processing is needed on the com-
puter. The measured DBH values are also stored in the 
device in the format of a text file, which can be conveni-
ently transferred to computers or other external stor-
age devices. Our device integrated a GPS receiver that 
could record latitudes and longitudes of measurement 
sites. This is critical information for us to understand 
the spatial distribution pattern of forest resources at a 
larger geographical scale.

One critical step in DBH measurement is to locate 
the measuring position on the trunk that is 1.3 m above 
the ground (the breast height). A bottom-point of the 
targeted tree is required to determine the breast height 
and locate the measuring position. Several research-
ers locate the bottom-point using a manual approach 
[18], or with the help of a marker [11]. Wu et  al. [3] 
presented a complicated algorithm to determine the 
measurement position based on the depth information 
of the tree and spatial coordinate system transforma-
tion. However, in practice, it is difficult to guarantee 
the accuracy of locating the bottom point automati-
cally because of the occlusion of dwarf shrubs, herbs, 
rocks, and the curve of the land surface, particularly in 
thick tropical or sub-tropical forests. The uncertainties 
in bottom-point determination will definitely influence 
the accuracy of the DBH measurements. Our device 
does not provide an automatic location for the measur-
ing position.

Many image-based devices can measure not only 
the DBH, but also the tree height and crown size [3, 
11, 18]. Tree height measurement is a difficult task in 
forest surveys owing to the difficulty in locating the 

vertices of trees, particularly in dense forests of tropi-
cal or sub-tropical regions. In addition, it is difficult to 
obtain a photo of the entire tree crown in the thick for-
est. Hence, our device is not a “Jack of all trades,” as it 
focuses on the DBH measurement.

Tree trunk detection based on CNNs
In our research, we utilized CNNs to detect the trunk 
of a targeted tree. We also adopted a spatial atten-
tion module to increase the accuracy of object detec-
tion in complex environments. We found that in most 
cases, the object detection algorithm based on CNNs 
could identify the trunk fairly well for barks with uni-
form color and consistent surface texture. However, 
sometimes it caused obvious errors in the detection 
of tree trunk when the barks were variegated, rough, 
and shaggy, particularly when there were spots of sun-
light on the tree trunk. To deal with this problem, we 
designed the “Refine” module to correct the error of 
edge detection manually. Furthermore, measures of 
image processing should be conducted to decrease the 
effects of sunlight on object detection. In addition, the 
amount of training samples also had a critical influ-
ence on the performance of deep-learning-based object 
detection algorithms. In our research, only 100 pictures 
of five species were used to train the CNNs. This defi-
nitely limited the ability of CNNs for object detection. 
Therefore, in the future, more pictures including more 
tree species should be collected to enhance the object 
detection ability of CNNs.

We also planned to increase the number of train-
ing samples by building a “Treebank” database. The 
pictures taken by the device in the field will be trans-
ferred to the “Treebank” wirelessly. These pictures will 
be used for training the model on the “Cloud” (Server), 
and the trained model (CNNs) will be used for tree 
measurement. With the increase of picture numbers 

Fig. 9  Relationship between absolute relative error and percent of 
targeted tree trunk in the acquired image
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in the “Treebank,” the detection ability of CNNs will 
be continuously improved. The limitation for this tech-
nique is the availability of internet, but it is fortunate 
that mobile 4G signal is almost everywhere.

Evaluation of measurement accuracy
The correlation analysis and independent sample t-test 
indicated that the DBH values measured by the newly 
developed device were significantly correlated with the 
references, and no significant differences (p > 0.01) were 
detected between the measured DBH values using our 
device and the references. This verified that the pre-
sented device could satisfy the requirements of field for-
est surveys.

The accuracy of previous image-based DBH estima-
tions varied greatly. Varjo et al. [13] developed an image-
based method that resulted in a − 0.6 mm to − 2.8 mm 
BIAS, and 7.0–9.4 mm RMSE in DBH estimates for trees 
with different heights. Liang et  al. [15] estimated the 
DBH using images with the G (green) channel and the 
RGB channels. The BIAS and relBIAS were 4.8 mm and 
1.33% for DBH values estimated from the G image, and 
19.8 mm and 5.39% for the RGB image, respectively. The 
RMSE and relRMSE were 23.9  mm and 6.6% for DBH 
values estimated from the G image, and 44.7  mm and 
12.14% for the RGB image, respectively. Adilson et al. [37] 
utilized vertical fisheye images to measure the DBH and 
achieved an RMSE of 14.6 mm. In the study by Fan et al. 
[18], the RMSE of DBH estimations using smartphones 
was 12.6  mm, relRMSE was 6.39%, BIAS was 3.3  mm, 
and relBIAS was 1.78%. Wu et al. [3] developed a smart-
phone-based DBH measuring device, and the RMSE of 
the measured DBH values was 2.17 mm. Compared with 
most previous studies, our device showed higher meas-
urement accuracy (Table 1).

In the field measurement for accuracy testing using 
the newly developed device, we took only one picture for 
each tree from one direction to estimate the DBH of the 
targeted tree. This definitely influenced the DBH meas-
urement accuracy because the tree trunk is not a stand-
ard cylinder and the cross-section is not a perfect circle. 
The measured points represent different diameters with 
any change in view angle [8]. Hence, we proposed to per-
form repeated measurements from multiple directions 
to improve the measurement accuracy when using the 
newly developed device in the field DBH measurements.

Here, we need to emphasize that the measurement 
accuracy reported in our research was based on data col-
lected in a deciduous broad-leaved forest in winter. If the 
test measurement was taken in summer or autumn, the 
measurement accuracy might be slightly different from 
that in the winter, as the light condition may vary under 
the forest. In addition, the measurement site is located 

in a semi-natural forest, where the tree density may be 
lower than in a natural forest, particularly sub-tropical or 
tropical forests. This means that the background of the 
targeted tree at our test site might be less complex than 
that of a natural forest. Previous research has proved that 
complex backgrounds have a negative influence on the 
extraction of the tree trunk [3]. Therefore, the measure-
ment accuracy of the new device may change slightly if 
the test data are collected in a natural forest, due to the 
variation in forest structure.

Economic cost of the newly developed device
Among the dendrometers applied in forest surveys, the 
cheapest is the conventional tape, which costs less than 
five dollars for   a tape  in China. The LiDAR system is a 
popular high-throughput technique for DBH measure-
ments. However, the LiDAR system is expensive, cost-
ing about fifty thousand dollars to buy the instrument. 
Another high-throughput technique for DBH measure-
ments is the image-based point-cloud data method. In 
this method, you need one or several cameras to gain 
multiple images of the plot from different directions, 
with the price for one camera ranging from five hundred 
dollars to six thousand dollars, or even more. For our 
device, the hardware cost about two thousand dollars. If 
the device were mass produced, the cost would decrease 
to five hundred dollars per device.

Although the economic cost of the new device is lower 
than that of the LiDAR system, it does not mean that 
the new device could replace the LiDAR system. This is 
because the design and application scenario of the new 
device are different from those of LiDAR. Our device is 
suitable for diameter measurements of individual trees at 
the quadrat level (usually 20  m × 30  m). Whereas the 
LiDAR is usually used to measure the diameters of trees 
at plot level (100 m × 100 m, or even larger).

Analysis of major error sources
The horizontal distance between the laser rangefinder 
and the targeted tree is a very important factor that 
affects the measurement accuracy. However, the coded 
spot emitted by a laser is easily flooded by sunlight [3]. 
When the device faces the sun or specular light, the rang-
ing precision cannot be guaranteed.

The newly developed device is a handheld instrument, 
and no tripod and spirit level are required for measure-
ment. It is convenient and efficient to conduct measure-
ments in the field. However, without the support of a 
tripod and spirit, it is difficult to keep the device parallel 
to the targeted tree trunk. This may lead to an error in 
distance measurement and affect its accuracy.

Errors also occurred in the detection of trunk edges, 
which cause further errors in determining the pixel 
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number between the edges of the tree trunk, leading to 
the detriment of the measurement accuracy.

The trunk form also causes a difference between the 
DBH values measured by the new device and that of the 
conventional tape. We have previously discussed this 
issue in “Discussion”, and more details were presented 
in “Evaluation of measurement accuracy” section.

Proposed application scenarios
Our device is designed to provide an alternative to con-
ventional tape, or to replace it in the measurement of 
tree diameter. It is suitable for measuring the DBH of 
individual trees in forest inventory at the quadrat level. 
Our device can also be applied in forestry and agricul-
ture related industries, such as for the measurement of 
plant traits in plant breeding, as it can be an efficient 
measurement of tree diameter and fruit diameter.

Conclusion
The newly developed handheld device realized efficient, 
accurate, instant, and non-contact measurements of 
DBH, and the CNNs were proven to be successful in 
the detection of tree trunks in our research. The meas-
ured diameter values and the recorded longitudes and 
latitudes of the measurement sites were written into a 
text file, which was convenient for export to an external 
flash disk. We believe that the newly developed device 
can fulfill the precision requirement in forest surveys, 
and that the application of this device can improve the 
efficiency of DBH measurements in forest surveys.
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