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Abstract

Genetic engineering of commercially important crops has become routine in many laboratories.
However, the inability to predict where a transgene will integrate and to efficiently select plants
with stable levels of transgenic expression remains a limitation of this technology. Fluorescence in
situ hybridization (FISH) is a powerful technique that can be used to visualize transgene integration
sites and provide a better understanding of transgene behavior. Studies using FISH to characterize
transgene integration have focused primarily on metaphase chromosomes, because the number
and position of integration sites on the chromosomes are more easily determined at this stage.
However gene (and transgene) expression occurs mainly during interphase. In order to accurately
predict the activity of a transgene, it is critical to understand its location and dynamics in the three-
dimensional interphase nucleus. We and others have developed in situ methods to visualize
transgenes (including single copy genes) and their transcripts during interphase from different
tissues and plant species. These techniques reduce the time necessary for characterization of
transgene integration by eliminating the need for time-consuming segregation analysis, and extend
characterization to the interphase nucleus, thus increasing the likelihood of accurate prediction of
transgene activity. Furthermore, this approach is useful for studying nuclear organization and the
dynamics of genes and chromatin.

Background mation. However, the unpredictability of integration sites
The production of transgenic plants is now routine for  and lack of expression stability are still limitations in
many crop species and different technologies for gene  plant transgenic technology. Significant efforts have been
transfer are available for a wide number of species, includ-  made to understand the mechanisms of transgene integra-
ing some previously thought to be recalcitrant to transfor-  tion in the host genome (reviewed in [1]). Most studies
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have focused on characterizing transgene loci by sequenc-
ing or genetic dissection of the integration sites. Cell biol-
ogy techniques have been used to complement these
molecular approaches and a great deal of information has
been obtained from the visualization of transgenes by flu-
orescence in situ hybridization (FISH) on metaphase
spreads (e.g. [2-11]). This technique makes it possible to
physically map transgene integration sites, but complex
patterns of integration are often found in transgenic
plants and the underlying mechanisms of transgene inte-
gration are still far from being completely understood.
Since predictable transgene expression is the goal, it is
important to remember that most gene transcription takes
place during interphase and not metaphase. We believe
that visualizing transgenes and their transcripts in inter-
phase nuclei can provide information about transcrip-
tional competency, and that this knowledge can be used
to improve prediction of transgene behavior.

There is now good evidence that the spatial organization
within the cell nucleus has a strong impact on gene
expression (reviewed in [12,13]). Our previous work has
shown that FISH on three dimensional nuclei of trans-
genic plants can provide new insights into the relation-
ship between higher order chromatin structure and the
expression of endogenous genes and transgenes [14-16].
We have shown that FISH can be used to better under-
stand chromatin and gene organization and dynamics by
following the localization of transgenes during the cell
cycle [2], or by inducing architectural modifications of
chromatin [14]. A number of published studies show that
spatial clustering of endogenous sequences affects gene
expression (reviewed in [13,17]; [18,19]). Sproul et al.
[20] reviewed how chromatin structure can control not
only the expression of individual genes, but also the
simultaneous regulation of multiple genes, in organisms
such as yeast, Drosophila and C. elegans. The ribosomal
genes are the best characterized example of gene clustering
in plants (e.g. [21]). However, the concept of gene cluster-
ing can be extended to include transgene repeats that are
integrated as multiple copies, such as we have observed in
wheat [2]. FISH has proved to be an important tool for
understanding the behavior of genes (endogenous or
exogenous) and how they are regulated within the context
of nuclear organization (reviewed in [22]). FISH can also
be a valuable tool for dissecting the complex mechanisms
of transgene integration in the host genome. The impor-
tance of understanding the factors that influence higher
order transgene organization in order to optimize trans-
gene expression has been reviewed in [23]. Knowledge of
these factors will improve manipulation of transgene
expression stability, and thus has implications both in
fundamental and applied research.

http://www.plantmethods.com/content/2/1/18

In this paper we review a set of techniques that allow the
use of FISH to visualize transgene integration sites in
interphase cells. We describe the preparation of whole tis-
sue sections where the 3D structure of the nucleus is well
preserved, isolated nuclei in which probe penetration is
facilitated, and histone-depleted nuclear halos in which
the arrangement of transgene insertions can be visualized
in more detail relative to the nuclear matrix or DNA loop
domains. We also describe the use of extended DNA fib-
ers, in which it is possible to observe short genomic
regions interspersed with repeated transgenes, and the
localization of transgenic RNA by FISH using RNA probes.
Since previous applications of FISH have focused on
highly condensed, transcriptionally inactive metaphase
chromosomes, we compare the information obtained
from metaphase FISH to that using interphase nuclei. It is
clear that both applications of FISH provide important
information that complements the data from traditional
techniques such as Southern hybridization and PCR. The
techniques that have been developed allow the visualiza-
tion of single copy transgenes and their transcripts in sev-
eral different plant species. The implications of our results
are discussed both from the applied perspective, for deter-
mining the likely stability of transgene expression, as well
as how they may increase our fundamental knowledge of
the relation between nuclear structure and gene expres-
sion.

Spatial organization of the transgene locus is
important for predicting transgene expression
and stability

The genomes of several model and crop species have now
been fully sequenced, or will be in the near future. This
information opens up new opportunities for dissecting
pathways that determine the successful expression of inte-
grated transgenes and will bring us closer to being able to
manipulate transgene expression and stability. Over the
last few years, our view of how genes are regulated has
expanded from a focus on DNA sequences (e.g. promoters
and enhancers) to a broader appreciation of chromatin-
mediated regulation of gene expression. Accumulating
knowledge on the histone code [24,25], or even more
recently, the "chromatin code" [26-28], has provided
information on multi-protein complexes that directly or
indirectly affect the chromatin structure around a gene.
Epigenetic information has a major role in the control of
gene expression and has been related to physical changes
in the organization of the locus. Major epigenetic modifi-
cations of chromatin include cytosine methylation
[29,30] and several key post-translational modifications
of histones [28]. The best studied histone modification is
the acetylation of histone tails [31,32]; a more 'open'
chromatin state resulting from histone acetylation is
thought to increase the accessibility of transcription com-
plexes to genomic DNA [33]. The control of chromatin
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structure is complex and also involves mechanisms such
as RNA interference (originally termed post-transcrip-
tional gene silencing) and transcriptional silencing. How-
ever a detailed discussion of this topic is beyond the scope
of this review.

In transgenic plants, the effect of epigenetic modifications
on transgene expression is most evident when independ-
ent transformants carrying the same transgene show dif-
ferent levels of expression even when inserted at the same
genetic locus [34]. There is now evidence that many of
these differences are a consequence of biochemical differ-
ences in chromatin at the different integration positions
[26]. To date, most reports on transgene locus structure
and organization have been obtained using molecular
tools, such as PCR, sequencing and southern blot analy-
ses, which provide information about the structure and
location of the transgene integration site, although some
reports have included studies on metaphase spreads, with
chromosomal mapping of transgene loci using FISH.
Identification of the chromosome and chromosomal
regions where the transgene has been integrated provides
important information on the site of transgene integra-
tion, as well as possible differences in locus structure
between different methods of transformation. This type of
analysis has shown that there is no preference for integra-
tion in particular chromosomes when particle bombard-
ment is used in wheat [2], barley [7] or oat [35]
transformation, but there is often a preference for integra-
tion in the distal regions of the chromosome arms. For
example, the majority of transgene loci in petunia [36,37]
and oat ([8], [35] and references therein) are localized in
telomeric or sub-telomeric regions. Iglesias et al. [38] used
FISH to probe the physical location of transgene insertion
in tobacco, and demonstrated that the stably-expressed
inserts were in the vicinity of telomeres, whereas the
unstably-expressed inserts occupied intercalary and para-
centromeric locations.

We have collective experience with several plant species:
wheat, rice, tobacco and Arabidopsis, as well as tobacco
suspension cell cultures. Other investigators have studied
many other species. This has provided a wide variety of
material to study several aspects of chromosome and
(trans)gene organization and expression. We have previ-
ously observed clustering of transgenes in the interphase
nucleus of plants containing multiple transgene integra-
tion sites, which was not evident in metaphase chromo-
somes. We hypothesized that the transgene sites were
brought together in interphase nucleus because they were
recruited to a common functional domain such as a tran-
scription factory, perhaps reflecting the fact that they
shared the same promoter [2]. This demonstrates the
importance of using FISH on interphase nuclei to obtain
information that could not be obtained by any other
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method. More recently, and mostly in literature on animal
systems, it has been shown that chromatin structure has a
role in regulating the expression of clustered genes
(reviewed in e.g. [20]). Multiple tandemly integrated cop-
ies of transgenes are often generated by particle bombard-
ment and may affect the structure of the chromatin
surrounding the transgenes, which may in turn affect their
expression and/or stability. Interestingly, introduced DNA
lacking genes can also be condensed into heterochroma-
tin. Pecinka et al. [39] showed that arrays of repeated lac
operators used for Green Fluorescent Protein tagging of
DNA had higher frequencies of association with each
other and with heterochromatin than expected, which
may alter the spatial chromatin organization in the nuclei.
In the recent years it has become clear that molecular anal-
ysis, along with phenotypic and genotypic segregation
analyses, are not sufficient to fully understand the com-
plexity of transgene loci. We therefore suggest that it is
essential to look at interphase nuclei to get a deeper
understanding of the role of nuclear structure in the regu-
lation of transgene expression.

Fluorescence in situ hybridization (FISH) is
essential for a full characterization of transgenic
plants

Transgene loci vary in size and complexity, and the site of
integration may have properties that favor integration or
selectable marker expression. Agrobacterium-mediated
transformation results in a higher proportion of simple
inserts than is produced using microprojectile bombard-
ment. FISH of transgene loci on metaphase and pro-met-
aphase chromosomes [2,11,35] and on extended DNA
fibers ([40], Wegel and Shaw, unpublished]) shows that
genomic interspersions in between multiple transgenes
can vary in length from a few kilobases to several mega-
bases. The presence of complex transgene loci suggests
that these loci may also exhibit some level of transgene
scrambling because transgene locus formation appears to
proceed via Illegitimate Recombination (IR) [8,23,41]
regardless of the DNA delivery method. Transgene scram-
bling can cause problems with gene expression because
complex transgene loci are often associated with trans-
gene silencing. Understanding the processes that occur
during integration is more likely to lead to strategies for
producing stably expressing transgenic plants. As the sen-
sitivity of FISH techniques improves, more information
can be gained and integration events can be better charac-
terized.

Sensitivity of FISH for in situ detection of transgenes —
detection of single-copy genes

Since the first description of in situ hybridization in 1969
[42], many advances have been made in the sensitivity of
detection of DNA and RNA molecules at the cellular and
subcellular levels. FISH has come to be used frequently as
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a tool in basic and applied research because detection is
sensitive and allows discrimination of multiple targets in
the same sample. The efficiency and sensitivity of FISH
depends on the accessibility of the cytological targets and
the size of the probes. In FISH, as with most labeling tech-
niques in cell biology, there is a compromise between
optimal preservation of cell and tissue morphology and
accessibility to labeling reagents [43]. Thus the need for
good ultrastructural preservation may limit the sensitivity
of FISH for mapping DNA sequences on plant chromo-
somes. In general the target DNA sequences have been
limited to large or high copy number inserts from 10 to 60
kb (e.g. [35,44]). Technical difficulties in detecting single
or low copy number target sequences are partly due to the
large proportion of non-target repeat sequences, which in
some cases are more than 90% of the genome [45]. There
are some reports on the detection of small, single copy
DNA sequences in plants; table 1 includes examples
where single or low copy number transgenes and some
endogenous genes have been analyzed by FISH. For exam-
ple, a successful detection of one or two copies of T-DNA
to metaphase chromosomes of Petunia hybrida was per-
formed using a 2.7 Kb probe [46]. Detection of targets as
small as 4 Kb in maize interphase nuclei has also been
reported [47]. To date, the shortest reported unique DNA
sequence localized on mitotic plant chromosomes is 684
bp in Beta vulgaris [48].

Methods such as Tyramide-FISH, in which signals can be
amplified by the enzymatic deposition of fluorochrome-
conjugated tyramide, have been adapted for plants and
target sequences as small as 710 bp on Allium cepa mitotic
chromosomes have be detected [49]. Another approach to
increase FISH sensitivity is the use of primed in situ DNA
labeling (PRINS, [50]). PRINS uses a primer-based ampli-
fication of the target DNA in a chromosomal preparation
containing fluorescent-labeled nucleotides. Menke et al.
[51] have compared the sequence resolution of PRINS
versus FISH on plant chromosomes and found that PRINS
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was useful for the detection of high copy number repeats,
but could not be used to detect a low copy number gene
family. A more sensitive modification, called cycling-
PRINS (C-PRINS), has since been developed. This tech-
nique includes the use of thermal cycling, similar to PCR,
and has been reported to be able to detect low copy
number repeats [52,53].

Increasing the sensitivity of photometric detection has
also allowed the visualization of smaller sequences. For
example, the use of a cooled charge-coupled device
(CCD) camera can increase the detection sensitivity 30-
fold compared with simpler digital cameras or film. For
DNA-FISH, unique sequences of 1-2 kb can be detected
on metaphase chromosomes with a resolution of about 3
Mbp. With FISH on highly decondensed chromatin (i.e.
naked DNA fibers) a sensitivity of 200 bp and a genomic
resolution of about 1 Kb can be obtained. However the
efficiency of DNA-FISH decreases as the target DNA
becomes smaller. The intensity of signals from small tar-
gets indicates that the sensitivity of DNA-FISH is only in
part determined by the ability to generate sufficient pho-
tons for detection. Other factors such as accessibility,
DNA loss, and in situ renaturation of the DNA target and
probe sequences are equally important. In chromosomal
and fiber-FISH a considerable level of noise is manageable
as the specificity of the signals can often be verified by
positional information.

FISH can be applied to distinct cytological
targets

The sensitivity and resolution of FISH on interphase chro-
matin depends on the cytological target it is applied to,
and mainly on the state of chromatin condensation (see
reviews [54-56]). We have performed FISH on interphase
nuclei with progressively lower levels of chromatin com-
paction: (1) well preserved 3D structures in thick root tis-
sue sections prepared with a vibratome; (2) isolated
nuclei that maintain their 3D structure although extracted

Table I: Sensitivity of FISH to detect single or low copy genes or transgenes.

Plant Species Target DNA Phase of Cell Cycle Probe size Reference
Petroselium crispum Endogenous Metaphase 6,6 Kb [104]
Oryza sativa T-DNA Metaphase 5,6 Kb [3,105]
Oryza sativa T-DNA Metaphase 5,5 Kb [106]
Zea mays T-DNA Meiosis (pachytene) 3,1 Kb [107]
Zea mays Endogenous Meiosis (pachytene) 3,1 Kb [108]
Petunia hybrida T-DNA Metaphase 2.7 Kb [46]
Triticum aestivum Bombardment Interphase nuclei and metaphase chromosomes 1.8 Kb [2,14]
Asparagus officinalis Endogenous Interphase nuclei and metaphase chromosomes 1,4 Kb/1,7 Kb [109]
Oryza sativa Endogenous Metaphase 1,29 Kb [110]
Petunia hybrida T-DNA Metaphase 4 Kb [36]
Allium cepa T-DNA Metaphase 710 bp [49]
Beta vulgaris Endogenous Metaphase 684 bp [48]
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from a tissue; (3) histone depleted nuclei or nuclear halos;
and (4) extended DNA fibers.

FISH in interphase nuclei of 3D well preserved tissue
sections

Vibratome tissue sections analyzed by confocal micros-
copy have been used to study the 3D organization of cen-
tromeres, telomeres, chromosomes, transgenes and other
genomic sequences contained within bacterial artificial
chromosome probes (BACs) in interphase nuclei of wheat
tissues e.g. anthers, roots, endosperm and embryos
[2,14,16,43,57,58], rice root tissue [59,60], tobacco root
tissue [Abranches, unpublished] and Arabidopsis roots
[61]. In all cases good preservation of the tissue structure
has been achieved. For sectioned material, most fixatives
are based on agents such as formaldehyde. A small
amount of glutaraldehyde is sometimes added to the fixa-
tive; however the glutaraldehyde concentration should be
kept low (0.05-0.1%) as it may induce autofluorescence
in the tissues. Extended periods of fixation or high con-
centration of fixative may reduce accessibility, so a com-
promise must be made in order to preserve adequate
structure while retaining accessibility [62]. Transgenic
DNA can be detected by FISH using labeled DNA as a
probe in tissue sections. The probe needs to penetrate into
the tissue and gain access to the interior of the nuclei.
Thus, several pretreatments must be performed and these
will depend on the tissue type and on the species. The size
of the probe is also crucial; the optimal size of DNA frag-
ments for labeling is between 100-500 bp. For specific
targeting of the transgene sequence, it is possible to use
the isolated coding sequence of the transgene for labeling
instead of the whole plasmid ([5]; Abranches, unpub-
lished results).

In figure 1 we show a fixed 20 um thick rice root section
prepared with a vibratome. The DNA is stained with 4',6-
diamidino-2-phenylindole (DAPI). The root-tip was pre-
viously fixed with 4% formaldehyde, freshly made from
paraformaldehyde, and the tissue structure is well pre-
served. Figure 2 shows FISH images of transgenic DNA
from root tissue sections from different plant species,
including wheat (2A), rice (2B) and tobacco (2C). The
wheat line in figure 2A contains only two copies of the
GUS gene [2]. The two copies can be seen as a single signal
within the nucleus. Thus each nucleus contains two dots,
each one corresponding to one of the homologous chro-
mosomes (Fig. 2A). This demonstrates the high sensitivity
of the technique. The tobacco line shown in Figure 2C
contains 7 copies of the GUS gene [63]. The transgenic rice
line shown in figure 2B is more complex and produces
four transgene-derived polypeptide chains [64], which
result from co-transformation using four separate plas-
mids encoding four antibody components (the secretory
component; the light chain; the heavy chain; and the join-
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ing chain), resulting in the assembly of a secretory anti-
body. FISH probes were prepared from a mix of the four
plasmids that were used in co-transformation. When lines
are homozygous, an even number of spots is visible. Inter-
estingly, two discrete transgenic loci are seen in figure 2B.
The arrangement of transgenes as well as their relative
position is also informative, as has been discussed previ-
ously [2,14]. For studies on thick tissue sections it is pref-
erable to use a confocal microscope, which allows for a
detailed analysis through the depth of the tissue and sub-
sequent 3D reconstruction of the nuclei.

Isolated interphase nuclei of plants or plant cell lines

Good preservation of nuclear structure is also obtained for
isolated nuclei made by chopping the plant tissue with a
razor blade in a suitable stabilizing buffer. In this method,
the nuclei are spun onto a glass slide where they adhere
and retain much of their 3-dimensional organization, as
can be confirmed by confocal microscopy analysis. The
same procedure can also easily be applied to cell suspen-
sion cultures, which divide rapidly compared to most
plant tissues. This is a very informative approach for stud-
ying cell cycle changes. In figure 3, isolated nuclei from
transgenic tobacco plants visualized with a CCD camera
are shown. In panels 3A and 3B a single nucleus is shown,
stained with DAPI (3A), and labeled by FISH (3B). This
nucleus originates from a double haploid tobacco trans-
genic plant line that contains 7 copies of the GUS gene per
haploid genome [63]. Two spots are visible, presumably
corresponding to a single locus on each of a pair of
homologous chromosomes. In panels 3C and 3D we
show other isolated nuclei from NT1 tobacco suspension
cell lines expressing luciferase [65]. Different transgene
integration patterns are shown. Figure 3C demonstrates
the detection of a single copy luciferase gene using a luc
fragment probe in a cell line from [65]. Figure 3D allows
us to make a comparison with a cell line containing 48
copies of luciferase, as estimated by competitive PCR [66].

Histone-depleted nuclear halos

DNA halo preparations are obtained from interphase
nuclei (on microscope slides). In this method DNA loops
are formed by selectively removing the histones, produc-
ing a nuclear halo around the residual nuclear matrix in
which the bases of loops remain attached to the matrix
[40,67-69]. The two most commonly used methods for
removing the histones to prepare nuclear halos are either
a high-salt extraction [70] or a detergent extraction using
lithium 3'-5'-diiodosalicyclic acid (LIS) [71]. The arrange-
ment of transgenic sites can be analyzed on these DNA
loops providing important information on where the
transgene has integrated in the context of the DNA loops
that are anchored to or associated with the matrix. Some
of the tobacco transgenic lines used in our studies contain
a reporter gene flanked with the RB7 MAR [63,72] which
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Figure |
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Rice root tissue section labeled with DAPI. The vibratome longitudinal section is 20 m thick, containing about 2 cell layers. In
(A\) the entire section is shown while in (B) a single confocal section is shown. Note the inset in (B), which shows cell division

stages. Bar, 20 um.

might alter matrix association. We performed FISH on
nuclear halos using the transforming plasmid as the probe
and collected images using a CCD camera. Figure 4 shows
a nuclear halo prepared from the root tip cells of a tobacco
line containing 60 copies of the transgene. In figure 4A,
the DNA is stained with DAPI and the faintly fluorescent
dispersed DNA fibers are seen as a halo spreading outside
the brightly stained residual nucleus. In figure 4B, the
FISH signal on the halo appears as long strings of dots. In
the nucleus prior to histone removal the genes are pack-
aged and appear as a compact dot. When the histones are
removed, the DNA is unpackaged (halos), resulting in a
string of genes (dots). This technique allows the visualiza-
tion of the relative positioning of genes to the nuclear
matrix.

FISH on extended DNA fibers

Another development of the FISH technique is its applica-
tion to extended fibers, which are usually prepared by
detergent extraction of DNA from isolated nuclei. The
naked DNA is then stretched by allowing it to run down a
tilted slide. The sensitivity of FISH is greatly enhanced
because without histones and other chromatin-bound
proteins the DNA is more accessible to probes and detec-
tion reagents. Thus, with this method the detection of
DNA targets as small as a few hundred base pairs becomes
feasible [73]. The fiber FISH methodology has superior
mapping resolution compared to interphase nuclei. For
example, using probes hybridized to targets in the 45S
rDNA genes of tomato it was possible to detect DNA target
sequences as small as 700 bp [74]. The hybridization of T-
DNA sequences in transgenic potato plants to extended

DNA fibers revealed that T-DNA copies are closely inte-
grated. Moreover, by using probes to T-DNA and vector
sequences the composition and arrangement of inserts
can be assessed [75]. FISH on DNA fibers has enabled (1)
assessment of the effect of differences in probe length and
the mapping of different probes relative to one another,
providing detailed information on gene structure [76-82];
(2) analysis of the structure of repetitive DNA sequence
families [74,81,83-85]; (3) analysis of transgenic DNA
([4,40,75]; Wegel, unpublished results]). We have used
FISH to analyze the organization of a complex transgene
locus comprising two different plasmids containing
genomic fragments coding for two high molecular weight
glutenins in Triticum aestivum. In figure 5, we show FISH
with probes for the vector and the transgenic glutenin
fragments on DNA fibers isolated from endosperm, visu-
alized with a cooled CCD camera. The FISH signals show
the transgene arrangement along the linearized chromo-
somal DNA demonstrating once again that loci generated
by microprojectile bombardment are complex and con-
tain numerous interspersions of genomic DNA.

Simultaneous detection of transgenic DNA and
RNA

The analysis of transgene expression is typically based on
the steady-state level of mRNA or protein, which is
extracted from the transgenic material. Methods to meas-
ure mRNA level include RT-PCR, Northern blotting, serial
analysis of gene expression (SAGE) and microarray tech-
niques. More recently, a technique based on Chromatin
Immunoprecipitation named RNAPol-ChIP has been
devised which allows analysis of real time gene transcrip-
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Figure 2

Transgene sites in 3D interphase nuclei of wheat (A), rice (B) and tobacco (C) root tissue sections. The wheat line (A) is
homozygous and carries two transgene copies per homologue at a single site in the metaphase chromosome [2], each homo-
logue is indicated by arrows. The rice line (B) was labeled with the plasmids SCMI |, K|, H28, ]| [64], which were all co-bom-
barded. The tobacco line (C) contains 7 copies of the GUS gene and is a double haploid [63]. Confocal image stacks were
recorded with a section spacing of | um and a projection of two confocal sections is shown. Hybridization signals are indicated
by arrows and show two single dots one for each homologue. Each dot can include multiple copies of the transgene. Bars, 10

pm.
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Figure 3

Transgene sites visualized in tobacco isolated nuclei. In panels
A and B a single nucleus is shown, stained with DAPI (3A),
and labeled by FISH (3B). This nucleus originates from a dou-
ble haploid tobacco transgenic plant line that contains 7 cop-
ies of the GUS gene [63]; two signals, each corresponding to
a homologous chromosome, are clearly visible (arrows). In
panels C and D two isolated nuclei from independent NT |
tobacco suspension cell lines expressing luciferase are shown
[65]. Panel C demonstrates the detection of a single copy
luciferase gene using a luc fragment probe. Panel D shows a
nucleus with multiple insertions in a total of 48 transgene
copies. Bar, 10 um.

tion [86]. However, in all of these techniques the structure
is destroyed and thus they are not suitable for examina-
tion of the expression of specific genes in small amounts
of tissue, nor do they allow localization of the expression
of a particular gene in specific cells or tissues. Moreover,
results from these methods for gene expression reflect an
average of expression from many cells. Therefore, tech-
niques have been developed for microscopic visualization
of RNA abundance and distribution, in particular the
quantification and visualization of mRNA transcripts in
individual cells [87-92].

Earlier observations with simultaneous DNA (DNA FISH)
and RNA hybridization (RNA FISH) showed that in 90%
of cells the gene was directly associated with an RNA track
or focus. This observation provided confirmation that the
transcript foci and tracks represented the sites of transcrip-
tion, with the DNA positioned at or near one end of the
RNA track [93,94]. Later, Van de Corput and Grosveld
[95] were able to detect by RNA-FISH the primary tran-
scripts of the human embryonic, fetal and adult globins in
erythroid cells, and related expression patterns with other
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Figure 4

Transgene sites visualized in nuclear halos from a tobacco
plant line, which contains 60 transgene copies [63]. A) DAPI
staining, B) FISH signals clearly visible as two strings of dots.
Nuclear halos were produced by treatment with LIS (lithium
diiodo salicylate) which removes soluble proteins, including
histones. The DNA can be seen as a halo surrounding a
residual nucleus. In isolated nuclei, two signals, each corre-
sponding to a homologous chromosome, are clearly visible
(arrows). In contrast, in nuclear halos, a strand like arrow of
signals is clearly visible. Bar, 10 um.

parameters such as cell type, cell cycle, replication, and
stage of differentiation. More recently, the visualization of
RNA has provided correlations between chromatin struc-
ture and gene expression upon transcriptional activation
both in animal [92,96-99] and plant cells [15,16].

The ability to visualize the expression of many genes
simultaneously within individual cells with high spatial
and temporal resolution can help the understanding of
relationships among genes in single nuclei. For example,
Levsky et al. [89] showed that genes are not continuously
transcribed, implying that individual cells have unique
patterns of gene transcription. A similar observation was
also reported by Osborne et al. [96] who showed that
upon transcription distant genes co-localize to the same
transcription factory whereas identical, temporarily non-
transcribed alleles do not. These authors have used a com-
bination of 3D FISH, immunofluorescence and chromo-
some conformation capture (3C) to assess the spatial
organization for several genes in a mouse chromosome.
The 3C technique allows determination of the relative fre-
quencies with which different sites interact with each
other [100]. Osborne et al. [96] determined the percent-
age of colocalization of the RNA-FISH and the corre-
sponding DNA signals, as well as the colocalization of
widely separated genes when these genes are being tran-
scribed, and concluded that colocalization of genes is
transcription-dependent. These studies also indicated that
the most active genes undergo transcription on-off cycles,
which correlate with occupancy of transcription factories
during the on stage. Recently, by using a modification of
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Figure 5
Extended DNA fibers isolated from wheat endosperm. Green, Alexa Fluor 488: genomic EcoRI fragments of HMW-I1Dx5 (8.7
Kb) and HMW-1Ax| (7.0 Kb) containing the promoter, coding and 3'flanking regions of the two high molecular weight glutenin
genes transformed into Triticum aestivum L., cv Pro INTA Federal. Red, Cy3: pUCI9 (2.7 Kb), vector backbone of the plasmids
used for transformation.

3C and FISH, Ling et al. [98] found the colocalization of
distinct DNA segments located on different chromo-
somes. All these observations provide evidence to support
the idea that genes are dynamically recruited to transcrip-
tion sites, in agreement with the transcription factory
hypothesis of Cook et al. (e.g. [101,102]). These mecha-
nisms are likely to occur in the same way in plants
although this has yet to be demonstrated. In another
approach, Janiki et al. [92]used an inducible system in
which a 200 copy transgene array of inducible transcrip-
tion units was stably integrated into a euchromatic region
of chromosome 1 in human cells. With this system they
were able to observe that prior to transcriptional activa-
tion the transgene array is highly condensed and hetero-
chromatinized. After the induction of transcription the
RNA levels at the transcription site increased immediately.
In plants, Wegel et al. [16] have used two wheat transgenic
lines containing about 20 and 50 copies each of the HMW
glutenin genes (HMW) which are developmentally acti-
vated in the endosperm at about 8 days after anthesis.
They observed that, in non-expressing tissue, each trans-
gene locus consists of one or two highly condensed sites,
which decondense into many foci upon activation of tran-
scription in endosperm nuclei.

The sensitivity of mRNA FISH is not very well defined. Van
de Corput and Grosveld [95]estimated detection sensitiv-
ity as being of the order of 10 copies of a primary globin
RNA transcript using oligonucleotide probes. They also
demonstrated that different probes show different sensi-
tivities even when the base composition is similar. This is
probably due to the secondary structure of the RNA or its
association with protein complexes which could render
part of the RNA less accessible for hybridization.

In plants, the visualization of transcripts in different tis-
sues has been accomplished by in situ hybridization of

labeled single-stranded, antisense probes to specific
mRNA sequences in semi-thin sections of plant tissue.
This technique is especially valuable when a developmen-
tally regulated and/or tissue-specific promoter is used to
regulate transgene expression. For transgenic plants, a
technique of two-color in situ hybridization using two
gene-specific RNA probes labeled with different tags pro-
vides an extremely powerful tool for comparing the spa-
tial expression patterns of two genes in a specific tissue/
organ; for example, expression of the selective marker
gene and the gene of interest.

In figure 6 we show localization of RNA in wheat root tis-
sue sections (Fig. 6A), wheat endosperm (Fig. 6D),
tobacco tissue sections (Fig. 6B) and tobacco nuclei (Fig.
6C). The sections were made in a vibratome, which pre-
serves the cell and tissue structure well. In figure 6A, GUS
transcript is shown in root tissue sections of a transgenic
wheat line which contains two loci of the GUS transgene
[2,14]. Along the wheat root section the RNA is particu-
larly abundant in the xylem vessel cells which are clearly
distinguished by a substantial increase in the size of the
cell nucleus in comparison with the surrounding tissues.
Endoreduplication has been shown to occur in these cells
[103] and there is good evidence that after many endore-
duplication events, the replicated chromosomes tend to
remain together [103]. The increase in ploidy in these cells
may be correlated with the higher transcription level seen
in them. We have also investigated the localization of
transcripts in whole tissue sections of root tips (Fig. 6B)
and in isolated nuclei (Fig. 6C) of transgenic tobacco lines
containing the GUS reporter gene. The GUS gene tran-
script shown in figure 6B has no intron. Thus, most of the
FISH signal corresponds to nascent transcript at the locus
and only relatively small pools of transcript are detected
around the locus. A similar observation was reported by
Wegel et al. [16], who localized intronless nascent HMW-
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glutenin transcripts within the nucleus of transgenic
wheat and observed that the main RNA signal in the
nucleus was always restricted to the close vicinity of the
locus. Figure 6D shows a wheat endosperm nucleus
hybridized with probes to visualize simultaneously the
glutenin genes and their transcripts. The transcript was
localized in the vicinity of the gene. In other experiments,
we have detected small tracks emanating from the gene
locus such as in the tobacco nucleus shown in figure 6C,
which has also been observed in animal studies [93]. The
in situ visualization of transcripts offers new insights into
transgene expression analysis since variable expression
levels can be detected in situ at cellular level. Moreover the
physiological state of cells and the cell type within tissues
can be correlated with a specific pattern of gene expres-
sion.

Conclusion

In this report we present a practical assembly of useful
techniques to visualize transgene organization in the
interphase nucleus, when most genes are being actively
transcribed and potentially interacting with each other.

http://www.plantmethods.com/content/2/1/18

We have gathered data that contribute to a better under-
standing of: (1) the mechanisms involved in the stable
and predictable expression of transgenes; (2) how differ-
ent copies of the gene are positionally related; (3) the
interactions between transgene copies integrated in differ-
ent loci; (4) whether all transgene copies are active and
how this is related to their position in the nucleus. All this
information has a clear impact on the unraveling of struc-
ture-function relationships in the nucleus. In addition,
the knowledge of transgene organization in the three
dimensional interphase nucleus may also be crucial to
better understand the relation between gene location and
its activity. In plants, foreign DNA is thought to integrate
randomly into the genome, which has been considered a
major problem for plant transformation. Thus it is advan-
tageous to select the lines of interest at an early stage by
performing a full characterization of the transgene inte-
gration sites.

Transgene organization can be used as a tool to approach
fundamental questions of nuclear organization, chroma-
tin dynamics, and gene expression. We have shown DNA-

Figure 6

Transgenic RNA visualized in 3D interphase nuclei of root tissue sections from wheat (A), tobacco (B) and of an isolated
tobacco nucleus (C). The wheat transgenic line illustrated in (A) carries five transgene copies at two sites on metaphase chro-
mosomes as described in [2]. The tobacco transgenic line shown in B and C contains seven transgene copies. (D) Simultaneous
localization of transgene loci and their transcript in a2 wheat endosperm nucleus 9 days after pollination. Nuclei counterstained
with DAPI (blue) were hybridized with probes for the gene flanking regions and vector sequences of HMW-1Ax| and HMW-
IDx5 to detect the locus (green, Alexa Fluor 488) and with an antisense probe for the | Ax| coding region to detect the tran-
scripts (red, Alexa Fluor 633). The coding sequences of the two high molecular weight glutenin genes are highly homologous
and cross-hybridize. The image is a projection of serial confocal sections. Section spacing, 0.6 um. Bars, 10 um.
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FISH on four distinct states of decondensation, from well
preserved 3D nuclei within intact tissue sections to the
least compact state of chromatin: extended DNA fibers.
Intact nuclei, either isolated or in tissue sections, preserve
the three dimensional structure and provide the relative
positioning of transgene loci. On the other hand, nuclear
halos and DNA fibers allow for a higher resolution and
finer detail of the locus structure. Together with chromo-
somal mapping of transgene loci using FISH, the methods
described here provide a complete characterization of
transgenic loci, which is fundamental to complement
molecular analyses using PCR, sequencing and southern
blotting.

We have shown that FISH to localize transgenic DNA can
also be combined with in situ analysis of RNA, and there-
fore both gene and transcript can be seen in the same
preparation. This type of experiment has only occasion-
ally been carried out in plants as yet, but we believe that it
will be more common in the future. It has been widely
debated whether there is a correlation between the loca-
tion of a transgene and regulation of its expression, and
whether transgene copies integrated at different loci are all
active. Further clarification of these issues needs efficient
methods for in situ detection of the transgene within its
genomic environment together with 3-dimensional
microscopy and image analysis.
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