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and enormous losses. Hence, early discovery and diag-
nosis of these diseases is crucial. In the past, agricul-
tural experts performed plant disease detection, which 
required a high level of professional knowledge. However, 
this task was time-consuming, labor-intensive, and prone 
to error [2]. Traditional plant disease detection methods 
based on manually extracting features are complex and 
inefficient. The progress of artificial intelligence and com-
puter vision technology, especially the development of 
deep learning, offers solutions to many problems in dif-
ferent fields, including agriculture, and produces more 
accurate results than traditional methods [3].

Introduction
According to a recent report released by the Food and 
Agriculture Organization of the United Nations, prelimi-
nary findings suggest that over one-third of annual agri-
cultural production losses are caused by plant diseases 
[1]. Plant infectious diseases can lead to rapid spreading 
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Abstract
Tomatoes possess significant nutritional and economic value. However, frequent diseases can detrimentally impact 
their quality and yield. Images of tomato diseases captured amidst intricate backgrounds are susceptible to 
environmental disturbances, presenting challenges in achieving precise detection and identification outcomes. This 
study focuses on tomato disease images within intricate settings, particularly emphasizing four prevalent diseases 
(late blight, gray leaf spot, brown rot, and leaf mold), alongside healthy tomatoes. It addresses challenges such 
as excessive interference, imprecise lesion localization for small targets, and heightened false-positive and false-
negative rates in real-world tomato cultivation settings. To address these challenges, we introduce a novel method 
for tomato disease detection named TomatoDet. Initially, we devise a feature extraction module integrating 
Swin-DDETR’s self-attention mechanism to craft a backbone feature extraction network, enhancing the model’s 
capacity to capture details regarding small target diseases through self-attention. Subsequently, we incorporate the 
dynamic activation function Meta-ACON within the backbone network to further amplify the network’s ability to 
depict disease-related features. Finally, we propose an enhanced bidirectional weighted feature pyramid network 
(IBiFPN) for merging multi-scale features and feeding the feature maps extracted by the backbone network into 
the multi-scale feature fusion module. This enhancement elevates detection accuracy and effectively mitigates false 
positives and false negatives arising from overlapping and occluded disease targets within intricate backgrounds. 
Our approach demonstrates remarkable efficacy, achieving a mean Average Precision (mAP) of 92.3% on a curated 
dataset, marking an 8.7% point improvement over the baseline method. Additionally, it attains a detection speed of 
46.6 frames per second (FPS), adeptly meeting the demands of agricultural scenarios.
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Using tomatoes as an example, they are widely culti-
vated worldwide [4], with significant acreage and yield 
(Fig.  1). Tomatoes not only boast a delightful taste but 
also contain a variety of essential micronutrients, ren-
dering them highly nutritious and indispensable in daily 
diets [5]. Greenhouse cultivation provides an advanta-
geous environment for year-round tomato production 
but also fosters conditions conducive to disease occur-
rence and development. However, the high tempera-
ture and humidity within the facilities often lead to the 
proliferation of various diseases, significantly impact-
ing tomato yield and quality [6]. Greenhouse tomatoes 
are particularly susceptible to a multitude of rapidly 
spreading diseases, resulting in significant and persistent 
damage. During the winter and spring seasons, high tem-
peratures, humidity, and weak light within greenhouses 
have contributed to widespread disease occurrence, 
resulting in poor growth and a serious impact on quality 
and yield [7].

In recent years, due to climate change exacerbating the 
probability of tomato diseases, extensive spraying of agri-
cultural chemicals has ensued, which has resulted in sig-
nificant damage and persistent high levels of agricultural 
chemical residues in tomatoes (Fig. 2).

This has caused serious food safety issues and signifi-
cantly reduced the economic benefits of tomato cultiva-
tion. Consequently, rapid and accurate disease detection 

plays a crucial role in the prevention and control of 
tomato diseases [8, 9]. Currently, the identification and 
control of tomato diseases primarily rely on empirical 
methods (Fig.  3), which are characterized by low time-
liness, poor accuracy, and high requirements for the 
professional skills of inspectors, often resulting in mis-
diagnosis and missed detections. Therefore, leverag-
ing machine vision technology for precise detection of 
greenhouse tomato diseases has emerged as an urgent 
research topic.

Over the past few years, there has been an increasing 
inclination towards the application of artificial intelli-
gence (AI) methodologies to various areas of agriculture 
including crop planting, harvesting, and disease detec-
tion [10, 11]. Nevertheless, further advancements are 
imperative in this realm.

Traditional methods for detecting and identify-
ing plant diseases have shown some degree of success 
through manual feature extraction [12, 13]. However, 
such methods require a strong professional background 
and knowledge reserves, rendering them highly subjec-
tive. Additionally, some valuable features that cannot be 
discerned by the naked eye are easily overlooked. Fur-
thermore, when faced with massive amounts of data in 
natural environments, the accuracy of these traditional 
methods is significantly reduced [14, 15]. Compared to 
traditional methods, deep learning has powerful feature 

Fig. 2 Tomato disease damage. (a) Widespread dissemination of diseases, (b) Extensive spraying of agricultural chemicals

 

Fig. 1 Tomato greenhouse growing
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expression capabilities and can automatically extract 
features from massive multi-type disease data for detec-
tion and identification, thus achieving better results [16, 
17]. The performance of deep learning models in detec-
tion is inseparable from the training dataset. Currently, 
datasets for agricultural disease detection models are 
primarily categorized into two types: those captured in 
natural environments (with backgrounds) and those in 
controlled conditions (without backgrounds). As illus-
trated in Fig. 4, images collected in natural environments 
feature complex backgrounds, resulting in models with 
better robustness and generalization. Conversely, images 
captured in controlled environments lack background 
interference, leading to models that may not perform well 
in natural settings.

Given the close relationship between tomato disease 
occurrence and agricultural practices, management lev-
els, and climate change, existing open datasets for tomato 
disease primarily consist of laboratory samples, such as 
AI Challenger 2018, Kaggle, PlantVillage, among oth-
ers. Moreover, due to the considerable time and effort 
required to collect a sufficient number of samples from 
natural environments, research on tomato disease 

detection models often relies on open datasets captured 
in controlled conditions for training purposes.

Models trained on natural environment samples 
primarily focus on PC-based model construction, 
improvement, and structural analysis, neglecting the 
requirements for lightweight and high precision in prac-
tical applications. This considerable gap distances them 
from meeting the demands of automated disease detec-
tion in real planting scenarios. For example, Li et al. 
(2019) [18] developed an early detection platform for 
tomato late blight based on smartphones while Sun et 
al. (2021) [19] collected 2230 photographs depicting five 
prevalent apple leaf disease types with simple laboratory 
backgrounds and complex orchard backgrounds. Using 
data augmentation technology, they generated 26,767 
training images and proposed a mobile-based detec-
tion model, MEAN-SSD, and the algorithm achieved an 
impressive detection accuracy of 83.12% while maintain-
ing a swift processing speed. Similarly, Zhang et al. (2021) 
[20] introduced skip connections into Faster R-CNN to 
obtain an exceptional detection accuracy of 83.12% and 
a rapid processing speed on a self-built soybean disease 
image dataset. Chen et al. (2021) [21] developed and 
implemented a model for three types of cucumber leaves 

Fig. 4 Example images for two environments. (a) Images captured in natural environments, (b) Images captured in controlled environments

 

Fig. 3 Identification of tomato diseases using empirical methods. (a) Diseases on the front surface of leaves, (b) Diseases on the back surface of leaves
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- leaf mold, bacterial angular leaf spot, and healthy. By 
integrating an effective backbone network, feature fusion 
module, and predictor, the system achieved enhanced 
performance through the fusion of feature maps at vari-
ous levels, and the detection accuracy reached 85.52%. 
Fang (2021) [22] et al. proposed a novel self-supervised 
cross-iterative clustering approach for the analysis of 
unlabeled plant disease images, presenting a valuable 
contribution to the field of automated plant disease diag-
nosis and classification. Moreover, Dananjayan et al. 
(2022) [23] fine-tuned and evaluated multiple detectors. 
The results showed that YOLOv4 could achieve swift 
and precise disease detection capabilities. Kundu et al. 
(2022) [24] presented a study on disease detection and 
severity prediction in maize crops. Paymode and Malode 
(2022) [25] conducted research on multi-crop leaf dis-
ease image classification using transfer learning. Qi et 
al. (2022) [26] introduced an enhanced network model 
called SE-YOLOv5s, which added visual attention mech-
anisms to the YOLOv5s model to achieve key feature 
extraction. Experimental results on a tomato disease test 
set showed an accuracy of 91.07%. Syed-Ab-Rahman et 
al. (2022) [27] introduced an innovative approach utiliz-
ing an end-to-end anchor-based deep learning model for 
the detection and classification of citrus diseases, offer-
ing promising prospects for automated disease monitor-
ing in agriculture. These studies underscore the growing 
importance of artificial intelligence and deep learning 
in agriculture, providing innovative solutions for crop 
health and production management. While these disease 
detection models have realized a real-time return of dis-
ease recognition results, it is worth noting that models 
developed for single plant diseases are difficult to gener-
alize due to differences in plant biology and diseases [28].

Models developed based on ideal environment samples 
often lack practical validation of disease detection accu-
racy in natural environments. Existing research indicates 
that models developed based on ideal environment sam-
ples are only suitable for detecting diseases when the dis-
ease pixels dominate the image content. However, images 
obtained in natural settings are characterized by complex 

backgrounds, lighting interference, varying shooting 
angles, and diverse lesion scales, making it difficult for 
the model to be directly applied. Furthermore, the model 
fails to autonomously adapt to disturbances caused by 
changes in field lighting, leaf distortion, and variations in 
lesion angles and poses, resulting in poor performance in 
natural environments. The system proposed by Bora et 
al. (2023) [29] achieved disease detection rates of 99.84%, 
95.2%, 96.8%, and 93.6% for tomato leaves, stems, fruits, 
and root positions, respectively. Zhang et al. (2023) 
[30] reported experimental results on 3123 tomato leaf 
images, including 1850 camera-captured images and 
1273 obtained from the internet, indicating that the pro-
posed M-AORANet achieved a recognition accuracy of 
96.47%. Sunil et al. (2023) [31] utilized a Multi-Feature 
Fusion module (MFFN) to classify a publicly available 
tomato disease dataset, achieving training, validation, 
and external testing accuracies of 99.88%, 99.88%, and 
99.83%, respectively. These models have demonstrated 
excellent disease classification results in ideal environ-
ments but only provide information on the type of dis-
ease without localizing the lesions, making it challenging 
to extend them to natural environments.

The detection of tomato diseases using machine vision 
poses significant challenges [32], such as complex plant-
ing environments, multiple disease types, and inter-class 
similarity. The tomato diseases detection algorithm is 
required to have high capabilities in multi-feature extrac-
tion and cross-scale analysis [33]. Despite recent progress 
in deep learning technology addressing these issues [34, 
35], improving the accuracy of tomato disease detection 
and meeting multi-region, multi-space, and multi-time 
disease detection requirements in greenhouse cultiva-
tion remains an important concern. This study presents 
a deep-learning approach to detect tomato diseases. 
We analyze the types and characteristics of tomato dis-
eases to improve and experiment with the algorithm 
repeatedly. Our method meets the precision and speed 
requirements for intelligent detection of tomato dis-
eases, thereby reducing the cost of manual diagnosis (See 
Fig. 5).

Fig. 5 The challenges of tomato disease detection task
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Drawing on the foregoing analysis and insights from 
human brain neuroscience, this study reframes the task 
of tomato disease object detection into a reasoning chal-
lenge, focusing on determining the disease category for 
each object and pinpointing the disease location. To 
this end, we propose the fusion of the Transformer and 
YOLOv8n models, culminating in the TomatoDet frame-
work, tailored to detect small and occluded objects effec-
tively. Our specific innovations include:

(1) Establishing a feature extraction module that 
amalgamates the self-attention mechanism of 
Swin-DDETR, bolstering information extraction 
for small-scale objects through a novel backbone 
feature extraction network. This approach accelerates 
convergence speed and enhances detection 
performance without augmenting model complexity.

(2) Integration of the dynamic activation function Meta-
ACON with the backbone network, facilitating the 
capture of global information and enhancing object 
detection performance.

(3) Introduction of the proposed Bidirectional Weighted 
Feature Pyramid Network (IBiFPN) to fuse multi-
scale features, thereby enhancing the discriminative 
ability of disease objects and effectively mitigating 
the omission and misidentification of occluded 
disease objects in complex backgrounds.

(4) Experimental validation on a tomato disease dataset 
illustrates the efficacy of the proposed TomatoDet 
in achieving superior performance, meeting the 
demands for real-time detection of tomato diseases 
in greenhouse environments.

Materials and methods
The research implementation diagram in Fig. 6 indicates 
the step-by-step accomplishment of the research work.

According to Fig. 6, the proposed tomato disease detec-
tion process in this study comprises three main parts: 
data preparation, construction of the tomato disease 
detection model, and tomato disease detection.

(1) After obtaining greenhouse tomato disease images, 
initial screening is conducted to eliminate images 
of relatively low quality. This process constructs 
the initial set of disease images, performs data 
labeling, and partitions the dataset. Since training 
convolutional neural networks requires a large 
amount of training data, data augmentation methods 
are employed to expand the disease training set 
further, aiming to enhance disease recognition 
accuracy and prevent overfitting.

(2) After establishing the dataset, tailored feature 
extraction and feature fusion modules are 
constructed based on the requirements of tomato 
disease detection. A tomato disease detection model 
is proposed and trained, validated, and evaluated.

(3) The model is tested using a test dataset, and the 
optimal model is selected. It is then used to identify 
disease categories and provide location information 
for input disease images.

Feature extraction module Swin-DDETR
In complex backgrounds, the background for tomato 
diseases is complicated, and the size of disease spots is 
small. As weather, lighting, and occlusion affect imag-
ing, disease spot imaging poses diverse postures, blurry 
details in symptom features, high missed warnings, and 
false alarm rates due to overlapping occlusions. Addi-
tionally, existing large-scale servers cannot be used for 
tomato planting environments, making it necessary to 
embed the model into a mobile terminal. Thus, there are 
high requirements for feature extraction. As the primary 

Fig. 6 Workflow diagram of research
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neural network of the object detection model, the feature 
extraction part directly determines its effectiveness in 
identifying and classifying objects.

Motivated by the attention mechanism [36], the Trans-
former framework [37], the Detection Transformer 
framework [38] and the Deformable DETR framework 
[39], this study proposes a Swin-DDETR module to 
strengthen feature extraction.

The proposed Swin-DDETR module is shown in Fig. 7. 
To encode multi-scale feature maps, a deformable atten-
tion encoder is used instead of the attention encoder [40]. 
This allows the algorithm to naturally aggregate multi-
scale features and enhance its detection ability for small 
objects.

Swin-DDETR introduces the Swin Transformer [41], 
which is based on the offset window attention mecha-
nism, to replace ResNet for modeling complex scenes and 
constructing feature maps with richer semantic informa-
tion. The standard DDETR model uses ResNet as the fea-
ture extraction network, resulting in a smaller receptive 
field of the convolutional kernel compared to the Trans-
former. This limitation hinders the effective extraction of 
high-level semantic information from images and makes 
it challenging to reason over long distances, especially for 

complex scenes in tomato disease images. To mitigate the 
complexity of the feature extraction network, the Swin 
Transformer with the Swin-T structure is employed for 
feature extraction. Swin-T and ResNet-50 exhibit simi-
lar complexity, as depicted in the basic block structure 
shown in Fig. 8.

Within the Swin-T feature extraction network, the 
input image undergoes four stages of computation to 
sequentially generate feature maps with varying resolu-
tions and channel numbers. At each stage, the features 
from the previous stage undergo initial block slicing 
and linear embedding. Subsequently, they are input into 
a series of stacked Swin Transformer basic blocks for 
processing, as computed within each Swin Transformer 
block using the following equation:

 ẑl = W −MSA
(
LN

(
zl−1

))
+ zl−1 (1)

 zl = MLP
(
LN

(
ẑl
))

+ ẑl  (2)

 ẑl+1 = SW −MSA
(
LN

(
zl
))

+ zl  (3)

 zl+1 = MLP
(
LN

(
ẑl+1

))
+ ẑl+1 (4)

Fig. 7 Structure of Swin-DDETR
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In the aforementioned formula, W-MSA represents 
window multi-head attention, SW-MSA stands for off-
set window multi-head attention, ẑl  and zl  denote the 
features outputted from the l  offset window multihead 
attention module and the multilayer perceptron module, 
respectively. Following the feature extraction of the input 
image by Swin-T, a multiscale feature map with four dif-
ferent scales is obtained. The feature map generated in 
the i  stage is denoted as:

 Ci ∈ R
H
2i
×W

2i
×ci  (5)

In the aforementioned formula, H and W represent the 
height and width of the input image, and ci  denotes 
the number of feature map channels. The formula is as 
follows:

 ci = 3× 2i+3 (6)

The standard DDETR model primarily focuses on object 
detection in the COCO dataset, which primarily consists 
of natural scenes. However, the proportion of small and 
medium-sized objects in COCO dataset is significantly 
lower than that in tomato disease images. As a result, 
the standard DDETR model is adversely affected by the 
lack of low-level features, resulting in lower accuracy in 
detecting small and medium-sized objects. In the COCO 
dataset, objects with pixel areas smaller than 32 × 32 are 
defined as small objects, those with areas between 32 × 32 

and 96 × 96 are defined as medium-sized objects, and the 
rest are considered large objects.

From Table  1, it can be observed that in the tomato 
disease dataset, the proportion of small and large objects 
differs significantly from the COCO dataset, with a 23% 
higher proportion of small objects and a 23% lower pro-
portion of large objects. Furthermore, over 99% of the 
objects in the tomato disease dataset are categorized 
as small or medium-sized objects, indicating a notable 
disparity in object distribution compared to the COCO 
dataset.

In the Swin-DDETR feature extraction network, a 
feature mapping module is introduced to enhance the 
utilization of the C2  feature map from Swin-Trans-
former, without downsampling the C5  feature map. This 
improvement increases the proportion of low-level fea-
tures in the constructed multiscale features, reducing the 
minimum downsampling rate from 8 to 4, thereby pre-
serving more fine-grained details from the input image. 
In contrast, the standard DDETR model only utilizes the 
C3 , C4 , and C5  level features from ResNet, neglecting 
the use of the lower-level C2  feature map. This leads to a 

Table 1 Scale distribution of objects in the tomato disease 
dataset and the COCO Dataset
Dataset Small object 

ratio
Medium object 
ratio

Large 
ob-
ject 
ratio

COCO 0.42 0.34 0.24
Ours 0.65 0.34 0.01

Fig. 8 Structure of two successive Swin Transformer blocks
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high minimum downsampling rate in the DDETR model, 
resulting in the loss of a significant amount of detailed 
features from the original image.

The structure of the feature mapping module, as shown 
in Fig. 9, employs 1 × 1 convolutional operations to aggre-
gate information from different channels. The same num-
ber of convolutional kernels is applied to feature maps 
C2,C3 , C4 , and C5with varying channel numbers, result-
ing in multiscale features P2,P3, P4, and P5 with consis-
tent feature dimensions, maintaining uniform embedding 
dimensions in the Transformer.

Swin-DDETR module can supplement the global 
information that is lacking in convolution operation and 
highlight the representation of small targets on the fea-
ture map, thereby enhancing the capacity to detect and 
track diminutive objectives. Consequently, Swin-DDETR 
module was added to the final phase of the backbone net-
work of the baseline, resulting in a new feature extrac-
tion module named Swin-DDETR specifically for tomato 
disease detection. This module concentrates on the rel-
evant segments of the input for greater efficiency, weak-
ens interference from complex backgrounds, enhances 
the targeted learning of disease information features, and 
significantly improves the efficiency of model training 
by outputting all predicted results at once during feature 
map processing, as opposed to traditional Transformers.

Dynamic activation function Meta-ACON
The utilization of activation functions can enhance 
the network’s ability to learn complex mappings from 
data. The Mish activation function which is used in the 
YOLOv8n algorithm possesses characteristics such as 
smoothness, non-monotonicity, a boundless bottom, and 
a bounded top, resulting in superior performance com-
pared to commonly used ReLU and its variants. However, 
it remains a static activation function that is incapable 
of adjusting its processing abilities for complex data by 

responding to different input features. To address this 
issue, this study introduces a dynamic activation func-
tion named Meta-ACON [42]. This allows the network to 
autonomously grasp the structure of the input during the 
learning process and determine whether neurons should 
be activated.

Meta-ACON can efficiently adapt to various types 
of data inputs with distinct patterns by automatically 
adjusting different parameters and selectively focusing on 
significant information while maintaining high accuracy. 
One of the most significant advantages of meta-ACON 
is its unique ability to facilitate robust feature extrac-
tion that lessens interference from irrelevant background 
information while isolating disease-related features.

In contrast to traditional activation functions, wherein 
an identical function applies to all input regions, Meta-
ACON determines the appropriate activation function 
and corresponding parameter adjustments according to 
input characterizations, generating distinct outputs for 
every input of the data. Consequently, this innovative 
activation function enhances the precision in detecting 
diseases affecting tomato plants under different scenar-
ios and addresses the challenge of detecting anomalies 
among complex backgrounds.

Meta-ACON is a member of the ACON (Activate-
OrNot) function family. The author unified the Swish 
function into the ReLU function family and expanded 
the Maxout series of activation functions to create the 
ACON series of activation functions. Among them, 
ACON-C can be expressed as follows:

 

fACON−C (x) = Sβ (p1x, p2x)

= (p1 − p2) x · σ [β (p1 − p2)x] + p2x
 (7)

It covers most of the current activation functions, includ-
ing even more complex variations. Two learnable param-
eters, denoted as p1 and p2, enable the neural network to 

Fig. 9 Structure of feature mapping module
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adaptively adjust the activation function’s shape by learn-
ing their values. A smoothing factor called β  is employed 
to control whether a neuron should be activated or not. 
In ACON-C, β  is set as a hyperparameter and requires 
manual tuning. Meta-ACON enhances upon ACON-
C and introduces an adaptive function to compute the 
smoothing factor β  automatically. This enhancement 
facilitates dynamic control of the neurons’ activation sta-
tus based on the input feature matrix x .

The adaptive function is designed to target the channel 
space, as shown in the following formula:

 
βc = σW1W2

H∑

h=1

W∑

w=1

xc,h,w  (8)

Initially, the mean for dimensions H and W is calculated. 
This is followed by adjusting the number of channels 
using two 1 × 1 convolutional layers. Finally, the Sigmoid 
activation function is employed to confine the ultimate 
output of βc  within the range of (0, 1), thereby control-
ling whether the neuron is activated. βc  represents the 
shared parameter along the channel dimension, while 
W1 and W2 are the parameters of the two convolutional 
layers. The formula is as follows:

 W1 ∈ RC×C/r  (9)

 W2 ∈ RC/r×C  (10)

In the above formula, C denotes the count of channels, 
whereas r signifies the scaling factor between the two 
convolutional layers, which has been set at 16 to optimize 
parameter usage. This study introduces a new activation 
layer formed through the replacement of the activation 
function with Meta-ACON. The new activation layer has 
replaced all activation layers in the main network Swin-
DDETR. The use of Meta-ACON empowers this innova-
tive architecture to make corresponding transformations 
based on different inputs and adaptively determine its 
degree of nonlinearity – enabling the network to bet-
ter fit various data distributions. This feature provides 
superior performance when dealing with small object 
detection, particularly with many samples and complex 
distribution. With this new approach, the network can 
classify positive and negative samples more efficiently 
and improve the overall generalization performance.

Feature fusion module IBiFPN
As compared to the entire tomato plant in a complex envi-
ronment, disease spots belong to smaller targets that are 
easily affected by background interference. Feature fusion 
combines the feature with the rich semantic information 
derived from deep feature maps to enhance the capability 

of detecting small targets. The objective of this research is 
to enhance the model’s capacity to detect tomato disease 
targets and effectively fuse feature information at varying 
scales. To achieve this objective, we construct a feature 
fusion module following the feature extraction module. 
This module incorporates concat layers, convolutional lay-
ers, and C2f modules to execute an additional upsampling 
and downsampling process.To achieve feature fusion, the 
Concat layer is utilized to integrate the feature layer of 
identical scale from the backbone network, which cap-
tures a greater amount of detailed feature information for 
smaller objects and enhances the sensitivity of the new 
detection layer to small target features.

The BiFPN structure [43] is mainly used to fully fuse 
feature maps with different resolutions. Compared with 
FPN (Feature Pyramid Networks) in common target 
detection algorithms, BiFPN improves the feature fusion 
performance in the following aspects: using jump con-
nections to lighten the network; adding an attention 
mechanism to weight the learning of more critical feature 
information; and setting up two paths of up-sampling 
and down-sampling for more complete feature fusion.

To enhance the small target detection capability of 
BiFPN, this study introduces an enhanced version termed 
Improved BiFPN (IBiFPN) (Fig. 10d), which is contrasted 
with FPN (Fig.  10a), PANet (Fig.  10b), and the conven-
tional BiFPN structure (Fig. 10c). The specific fusion path 
of the proposed IBiFPN structure (Fig. 9d) is as follows: 
intermediate information is obtained by up-sampling, 
taking the intermediate point P5-td as an example: its 
added attention mechanism fuses the up-sampling infor-
mation of P6-td and the input information of P5 itself; 
output information is obtained by down-sampling, taking 
the output point P4-out as an example: its added atten-
tion mechanism fuses the down-sampling information of 
P3-out, the intermediate information of P4-td, the small-
scale information of P5-td, and the input information 
of P4 itself; finally, P3-out, P4-out, P5-out, P6-out, and 
P7-out are obtained by analogy and passed to the next 
layer of the proposed IBiFPN feature fusion structure as 
input information.

In this study, fast regularization methods are utilized 
to weight the input feature maps of nodes. The weighted 
formula for each feature fusion node is as follows:

 
O =

∑

i

wi

ε +
∑

j wj
· Ii  (11)

In the formula, wi ≥ 0epsilon is a small value set to 
1 × 10−4 for stability calculation. It can be observed that 
the weight range of feature fusion is between 0 and 1, 
which avoids the use of the softmax function which 
leads to significant increases in computation time. For 
instance, in the 4th layer, the BiFPN structure performs 
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cross-scale connections and weighted feature fusion 
using the following process:

 
P td
4 = Conv

(
w1 · P in

4 + w2 ·Resize
(
P in
5

)

w1 − w2 + ε

)

 (12)

 
Pout
4 = Conv

(
w′

1 · P in
4 + w′

2 · P td
4 + w′

3 · Resize (Pout
3 )

w′
1 + w′

2 + w′
3 + ε

)

 (13)

Here, P in  denotes the input features, Pout  represents the 
output features, and P td  denotes the intermediate layers 
in the top-down feature fusion process.

The proposed feature fusion module is capable of 
acquiring global information and exhibits strong feature 
fusion and fitting ability. Consequently, the model’s abil-
ity for detecting tomato diseases is enhanced. Therefore, 
as illustrated in Fig. 11, we present an overall framework 
of our tomato disease detection model (TomatoDet).

Data collection
For the experiment, we employed a tomato disease data-
set that we created from scratch. The images were cap-
tured using an agricultural Internet of Things monitoring 
device (HS-CQAI-1080) from a tomato cultivation facil-
ity situated in Shouguang City, located in Shandong 
Province, China. (Longitude coordinates: 118.782956 

Fig. 11 General framework of tomato disease detection model (TomatoDet)

 

Fig. 10 Comparison of four feature fusion structures
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E, latitude coordinates: 36.930686  N). The pixel dimen-
sion for the captured images is 3648 × 2056. The cap-
ture period for the images spanned from January 1st to 
December 31st of 2022 and occurred during two distinct 
periods, namely from 08:30 − 11:30 and 14:30 − 17:30. 
During image capture, the equipment was positioned 
at a distance between 0.2 and 0.5  m from the diseased 
leaves. The experimental dataset comprises over 10,000 
natural environmental images, devoid of structured 
backgrounds, collected from various conditions includ-
ing sunny and cloudy weather, with different disease 
locations and states. The dataset includes four common 
tomato diseases and healthy leaves: late blight, gray leaf 
spot, brown rot, and leaf mold. Furthermore, the col-
lected images record multiple sources of information 
such as the environmental temperature, location, and 
time of capture. The background of the disease images 
contains several different noises and environmental fac-
tors such as leaves, weeds, soil, and varying lighting con-
ditions from different angles, which include backlit and 
front-lit. The dataset is therefore suitable for practical 

applications of the model. Illustrative samples of the 
tomato disease dataset appear in Fig. 12.

Data annotation
During the dataset creation process, we utilized the 
open-source annotation tool LabelImg to annotate the 
positions and categories of lesions in tomato disease 
images. The annotation format followed the Pascal VOC 
standard. Upon completion of the labeling process, an 
XML file was generated containing information about 
the image dimensions, the category of the target lesions, 
and the coordinates of the top-left and bottom-right cor-
ners of the lesions. The data annotation process is illus-
trated in Fig. 13.

Data partitioning
From the collected data, 400 sample images were selected 
for each category, resulting in a total of 2,000 images. To 
ensure smooth experiment execution, the initial dataset 
was partitioned into three groups: the training set, vali-
dation set, and test set. The training set is composed of 

Fig. 13 LabelImg annotation and VOC dataset format. (a) LabelImg annotation, (b) VOC dataset format

 

Fig. 12 Sample of the tomato disease dataset
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1,600 images, while both the validation and test sets con-
sist of 200 images each.

Data augmentation
In this study, Data augmentation methods are applied to 
improve the model’s ability to generalize, mitigate over-
fitting, and improve training effectiveness. Specifically, 
data augmentation was applied exclusively to the training 
set, while the validation and test sets were kept unaltered 
to accurately assess the performance. We found that this 
approach consistently improved the performance and 
generalization capability of deep learning models. Vari-
ous data augmentation techniques were utilized, such 
as flipping the images horizontally and vertically, adjust-
ments in brightness levels and adding Gaussian Noise as 
depicted in Fig. 14.

By data augmentation, the training set and validation 
set are kept isolated from the test set. The training set is 
expanded to 9600 images while the validation set and test 
set remain unchanged. Then the training process begins.

After data augmentation, The total count of acquired 
images is presented in Table 2

Results
Experimental settings
The experiments were performed in a deep learning envi-
ronment on an Ubuntu 20.04 operating system orches-
trated on a CUDA 11.4 architecture integrated with 
Pytorch 1.8.1 and MMDetection framework 2.25.1. The 
models were trained using NVIDIA RTX2080Ti GPU for 
acceleration.

Before training, the sample data were divided into mul-
tiple batches (Batch), taking into account the number of 
samples and the hardware environment of the computer, 
the Batch size was set to 32 and the number of model 
iterations (Epoch) was set to 100 times during the experi-
ment in this study.

Evaluating indicator
This study utilizes average precision mean (mAP), param-
eter amount (Millions) and Frames per second (FPS) to 
assess the performance of network models. The specific 
calculation formula is as follows:

 
Precision =

TP

TP + FP
· 100% (14)

Table 2 The total count of acquired images
Original image Horizontal flip Vertical flip High brightness Low brightness Gaussian noise Total

Count 1600 1600 1600 1600 1600 1600 9600

Fig. 14 Data Augmentation of tomato images: (A) Original image, (B) Horizontal flip, (C) Vertical flip, (D) High brightness, (E) Low brightness, (F) Gauss-
ian noise
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Recall =

TP

TP + FN
· 100% (15)

 
AP =

∫ 1

0

p (r) dr  (16)

 
mAP =

∑K
i=1APi

K
 (17)

In the context of detection, true positive (TP) detections 
refer to correct positive predictions, false positive (FP) 
detections indicate incorrect positive predictions, false 
negative (FN) detections represent missed positive pre-
dictions, and Average Precision (AP) measures the preci-
sion of each category’s prediction, while p (r) represents 
the Precision-Recall curve. mAP (mean Average Preci-
sion) is the average of the AP values across all categories, 
K denotes the number of categories being detected, while 
i  represents the current data category. The mAP is evalu-
ated at an IoU (Intersection over Union) value of 0.5, in 
line with standard practice for object detection evalu-
ation metrics. The parameter amount (Millions) repre-
sents the spatial complexity. Frames per second (FPS) 
represents the detection speed obtained when testing on 
the validation set using a Tesla T4 16GB with a batch size 
set to 1. The calculation formula is as follows:

 
FPS =

Cimg

T imedetect
 (18)

In the above-mentioned formular, Cimg  represents the 
count of images within the test dataset, and T imedetect  
represents the time taken to detect Cimg  images.

Learning rate settings
The learning rate affects the performance of the model, 
so here the parameter optimization is sought for different 
learning rates, and the experiment compares the perfor-
mance of the model at learning rates of 0.1, 0.05, 0.01, and 
0.001 under the same control of other conditions so that 

the model obtains better learning of the training set and 
recognition of the test set. The variation curves of the loss 
function for different learning rates are shown in Fig. 15a. 
It can be seen that the loss function is almost constant 
when the learning rate is 0.1 and 0.05. This indicates that 
the learning rate is too high and the step size is too large, 
which makes the function unable to achieve convergence, 
indicating that a moderate learning rate should be set to 
consider the convergence and convergence speed, com-
paring the convergence and convergence speed when 
the learning rate is 0.01 and 0.001, it can be seen that the 
latter is better in terms of convergence and convergence 
speed. In addition, from Fig. 15b, it can be seen that the 
accuracy fluctuates significantly in the cases of 0.1 and 
0.05 learning rate, and the model accuracy is highest 
when the learning rate is 0.001. Therefore, the learning 
rate is finally set to 0.001.

Comparison with baseline model
The proposed model and baseline model were both 
trained with the tomato disease image dataset con-
structed in this study, and the loss function and accuracy 
of the model after 100 epochs were obtained, as shown in 
Fig. 16.

As can be seen in Fig.  16a, the loss value of the pro-
posed TomatoDet model stabilizes at about 8,000 itera-
tions and tends to be about 0.00158, while the baseline 
model tends to be about 0.09969. Figure  16b shows 
that the proposed TomatoDet model has increased the 
mAP value to about 0.9 at about 55 epochs and finally 
stabilized at about 0.92, while the baseline model has 
increased the mAP value to about 0.8 at about 80 epochs 
and finally stabilized at about 0.83. Thus, compared to the 
baseline model, the proposed TomatoDet model shows 
a significant improvement in both loss function conver-
gence speed and detection accuracy.

Figure  17 shows that the proposed TomatoDet pro-
posed in this study increased detection accuracy for vari-
ous types of plant diseases, particularly for small targets 
within disease categories. This increase was especially 

Fig. 15 Loss function and mAP of the TomatoDet model at different learning rates
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significant for diseases such as late blight, gray leaf spot, 
brown rot, and leaf mold, with improvements in detec-
tion accuracy for leaf mold and similar diseases reaching 
11.8% points in terms of AP value. The enhanced capa-
bility of the network in detecting small targets can be 
attributed to the implementation of the BiFPN feature 
extraction structure and the well-designed backbone net-
work, as indicated by these findings.

Ablation experiment
To verify if the proposed modules boost the network’s 
overall efficiency and determine whether there are any 
effects between modules, ablation experiments were 
employed for validation. Table  3 displays the outcomes 
obtained from the experiments conducted. In the table, 
Swin-DDETR refers to replacing the backbone network 
with Swin-DDETR; Meta-ACON serves as a substitution 
for the activation function within the backbone network; 
and IBiFPN indicates using the IBiFPN structure to sub-
stitute the PANet structure in the baseline.

According to the results of the ablation experiment, 
Model 2–4 revealed that the Swin-DDETR module 
designed in this study has the most significant impact 
on network mAP, increasing it by 2.9% points compared 
to the original model. The introduction of the activa-
tion function Meta-ACON and the IBiFPN structure 
also improved the network mAP by 2.5 and 1.4% points, 
respectively. These results indicate that each proposed 
module can contribute to enhancing network detection 
accuracy compared to the original model and improve its 
ability to extract information related to tomato diseases 
under greenhouse environmet.

To further illustrate the influence of the proposed 
Swin-DDETR module on network attention, the study 
introduced a visual attention technique known as Grad-
CAM [44]. This approach generates heatmaps during the 
network validation phase, enabling an analysis of whether 
the model is efficiently acquiring precise feature informa-
tion by examining highlighted regions in the heat map.

In Fig. 18, the attention heatmap is displayed using the 
GradCAM method on the validated results of disease 
images. The Ground Truth represents the accurate label 
for the disease image, the baseline refers to the original 
YOLOv8n model, and TomatoDet represents the pro-
posed model. By analyzing the images, it is evident that 
due to the Swin-DDETR attention module’s focus on 
global information, the proposed TomatoDet has more 
attention concentrated on the disease regions than the 

Table 3 Ablation experiment results
Model Swin-DDETR Meta-ACON IBiFPN mAP (%) FPS
1 No No No 83.6 42.8
2 Yes No No 83.2 46.5
3 No Yes No 82.9 34.4
4 No No Yes 82.8 47.8
5 Yes Yes No 84.3 33.9
6 Yes No Yes 83.7 46.9
7 No Yes Yes 83.6 49.8
TomatoDet Yes Yes Yes 92.3 46.6

Fig. 17 Comparison of detection effects between TomatoDet and the 
baseline model

 

Fig. 16 Loss function and mAP of TomatoDet and the baseline model
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baseline model. This feature enhances its suitability for 
disease detection tasks.

Experimental results from Model 5–7 evidence that 
the various improvement points of this study can be well 
incorporated. A comparison between Model 6 and Model 
2 confirms that the IBiFPN structure, coupled with the 
new backbone network, accelerates the detection speed 
while simultaneously improving accuracy. These findings 
suggest that the IBiFPN structure can effectively enhance 
the feature extraction capability and reduce the complex-
ity of the model. Ultimately, by combining all the experi-
mental improvements, there was a mAP increase of 5.3% 
while adhering to real-time detection standards regard-
ing speed.

Comparative experiments of different algorithms
To validate the effectiveness and superiority of Tomato-
Det proposed in this study, we conducted comparison 
experiments using the TomatoDet model. We compared 
it with several current mainstream object detection 
models, including Faster R-CNN, YOLOXs, YOLOv5s, 
YOLOv7-tiny, and YOLOv8n. Each comparison model 
was trained using the same parameters and the tomato 
disease dataset constructed in this study. The results of 
these comparison experiments are presented in Table 4.

The comparative experimental results demonstrate that 
the TomatoDet model proposed in this study outper-
forms Faster R-CNN, YOLOXs, YOLOv5s, YOLOv7-tiny, 
and YOLOv8n models in terms of both detection accu-
racy and speed. Moreover, it excels at detecting various 

categories of disease targets. These findings confirm the 
excellent performance of the TomatoDet model, which 
can efficiently and accurately identify and locate tomato 
disease targets even in complex backgrounds. It ful-
fills the deployment requirements for real agricultural 
scenarios.

Regarding model complexity, while the TomatoDet 
model slightly lags behind the YOLOX network model 
in terms of the number of parameters, it boasts signifi-
cantly smaller memory usage than other models. This 
demonstrates that the Swin-DDETR structure within the 
TomatoDet model accelerates inference speed while effi-
ciently reducing memory consumption. Consequently, 
the model is better suited for deployment on edge-
end devices with limited computational power, align-
ing with the needs of intelligent plant disease detection 
development.

The AP values of the proposed TomatoDet model 
and other models for the detection of five categories of 
tomato diseases are shown in Table 5.

It can be seen that the AP values for various algorithms 
differ significantly in the detection of different disease 
categories, with only minor distinctions in detecting 
healthy tomatoes. The TomatoDet model proposed in 
this study exhibits distinct advantages in detecting vari-
ous disease categories. This reaffirms the model’s excep-
tional capability to detect multi-scale and multi-category 
tomato disease objects.

Table 4 Comparison results of different models
Model mAP 

(%)
Param-
eters 
(Millions)

FPS FLOPs(G) Memory(MB)

Faster R-CNN 79.3 22.6 6.2 20.69 407.2
YOLOXs 79.8 3.4 29.2 30.98 119.6
YOLOv5s 80.9 20.6 29.8 33.05 87.9
YOLOv7-tiny 81.7 18.7 21.7 39.86 82.5
YOLOv8n 83.6 7.9 42.8 44.63 69.7
TomatoDet 92.3 13.3 46.6 48.98 43.9

Table 5 Comparison of AP values for five types of tomato 
disease detection
Model AP (%)

Late 
blight

Gray 
leaf 
spot

Brown 
rot

Leaf 
mold

Health

Faster R-CNN 80.3 78.4 77.3 78.6 88.7
YOLOXs 82.5 73.5 72.6 73.8 89.6
YOLOv5s 89.1 88.9 87.9 82.7 93.2
YOLOv7-tiny 80.4 80.4 78.1 77.6 90.1
YOLOv8n 83.7 82.2 80.2 80.1 90.3
TomatoDet 89.3 90.1 90.6 91.9 96.5

Fig. 18 Comparison of heatmaps of baseline and TomatoDet
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Model detection performance
The proposed TomatoDet shows a significant improve-
ment regarding the accuracy of disease detection in 
tomatoes compared to the original model, as depicted in 
Fig. 19.

Figure  19 visually demonstrates the advantages of the 
proposed TomatoDet through comparative visualization. 
As depicted in Fig.  19, the baseline model suffers from 
missed detections and inaccurate localization for diseases 
and has difficulties detecting small targets. The proposed 
TomatoDet detected some diseases that the original 
model failed to detect. The added attention mechanism 
effectively suppresses the interference of background 
information, making the localization more accurate. The 
proposed feature fusion module enhances the detection 
ability for small targets, resulting in higher detection 
accuracy and better model robustness. The overall dis-
ease recognition results show that the proposed Tomato-
Det has better global information extraction capabilities 
compared to the baseline model and performs better in 
identifying diseases with dark and blurry brightness, 
indicating a stronger generalization ability than the origi-
nal model. Therefore, the proposed TomatoDet presents 

more promising results, making it a potential solution for 
plant disease object detection.

Conclusion
In this study, we introduce TomatoDet, a real-time algo-
rithm designed for identifying tomato diseases utilizing 
the proposed Swin-DDETR, Meta-ACON and IBiFPN 
to enhance performance. Our proposed TomatoDet 
achieves precise real-time detection of tomato diseases 
by optimizing the backbone network, activation func-
tions, and feature fusion structure. The efficacy of Tom-
atoDet is demonstrated through experimental results, 
showcasing improved detection accuracy for tomato 
diseases. It outperforms mainstream disease detection 
algorithms, achieving a mean Average Precision (mAP) 
of 92.3% on our self-built tomat disease dataset. More-
over, our algorithm attains a frame rate of 46.6 frames 
per second (FPS) on the Tesla T4, meeting the demands 
for real-time detection of tomato diseases in greenhouse 
environments.

While this study has made certain achievements in 
tomato disease detection, there is still much research to 
be conducted before transitioning from the experimental 

Fig. 19 Comparison of the detection efficacy of TomatoDet and the baseline model
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stage to practical application, thus truly assisting tomato 
growers. Future endeavors will mainly include:

(1) Greenhouse environments significantly influence 
model performance. Expanding the dataset of real-
world tomato disease samples and implementing 
a model’s autonomous continuous learning 
strategy will enhance disease detection accuracy in 
greenhouse settings.

(2) Subsequent research will delve into the early 
occurrence patterns of typical high-incidence 
diseases, enabling timely detection and prevention of 
early-stage diseases.

(3) Future studies will integrate the tomato disease 
spraying robot developed by our team, transmitting 
disease occurrence location information to the 
spraying robot for targeted spraying operations. 
Subsequently, field evaluations of the robot’s 
operation performance will be conducted by 
professional crop protection personnel. Finally, 
based on operational data, inspection processes and 
performance will be optimized, accelerating the 
production and implementation of tomato disease 
inspection robots through statutory third-party 
performance testing.
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